Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T10:13:45.957Z Has data issue: false hasContentIssue false

The Effect of Deposition Method on Growth Morphology - Comparison of Molecular Beam Epitaxy, Ion Beam Assisted Deposition and Sputter Deposition

Published online by Cambridge University Press:  10 February 2011

Th. Michely
Affiliation:
Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jüilich, D-52425 Jülich, Germany
M. Kalff
Affiliation:
Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jüilich, D-52425 Jülich, Germany
G. Comsa
Affiliation:
Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jüilich, D-52425 Jülich, Germany
Get access

Abstract

Thin films created by the deposition or under influence of atoms with hyperthermal energies (E = 100 -104eV) exhibit properties which differ in many respects from those of films created by deposition of atoms with thermal energy. The morphologies of thin Pt-films deposited on Pt(111) under otherwise identical deposition conditions by molecular beam epitaxy (MBE), ion beam assisted deposition (IBAD) and sputter deposition (SD) differ in film structure size, island shapes and film roughness. The different film structure sizes are unambiguously traced back to two different island formation mechanisms inherent to these deposition methods. While in MBE the islands result from nucleation in a supersaturated adatom gas, in IBAD and SD they result by direct or indirect creation of adatom clusters as a consequence of single impacts of energetic atoms present in the depositing particle flux. The differences in film roughness are not only due to the different island formation mechanisms, but seem to be closely related to the different step edge structures at the growth front.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. King, D. A. and Woodruff, D. P. (eds.), Growth and Properties of Ultrathin Epitaxial Layers, The Chemical Physics of Solid Surfaces, Vol. 8, Elsevier, Amsterdam 1997.Google Scholar
2. Tringides, M. (ed.), Surface Diffusion: Atomistic and Collective Processes, Plenum Press, New York, 1997.Google Scholar
3. Esch, S., Bott, M., Michely, Th., and Comsa, G., Appl. Phys. Lett. 67, 3209 (1995).Google Scholar
4. Esch, S., Breeman, M., Morgenstern, M., Michely, Th., and Comsa, G., Surf. Sci. 365, 187 (1996)Google Scholar
5. Breeman, M., Michely, Th., Comsa, G., Surf. Sci. Lett. 370, L193 (1997).Google Scholar
6. Kalff, M., Breeman, M., Morgenstern, M., Michely, Th., and Comsa, G., Appl. Phys. Lett. 70, 182 (1997)Google Scholar
7. Esch, S., Ph. D. Thesis, University Bonn, published as Jül-Bericht 3256, Forschungszentrum Jülich, Jüilich 1996.Google Scholar
8. Lane, G. E. and Anderson, J. C., Thin Solid Films 26, 5 (1975).Google Scholar
9. Marinov, M., Thin Solid Films 46, 267 (1977)Google Scholar
10. Chason, E., Bedrossian, P., Horn, K. M., Tsao, J. Y., and Picraux, S. T., Appl. Phys. Lett. 57, 1793 (1990); C. H. Choi, R. Ai, and S. A. Barnett, Phys. Rev. Lett. 67, 2826 (1991); G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 71, 895 (1993); L. Pranevicius, and S. Taumevichus, Nucl. Instrum. Meth. B 209/210, 179 (1983); M. V. R. Murty; H. A. Atwater, A. J. Kellock, and J. E. E. Baglin, Appl. Phys. Lett. 62, 2566 (1993).Google Scholar
11. Morgenstem, M., Michely, Th., and Comsa, G., Phil. Mag. A, in print.Google Scholar
12. Teichert, C., Hohage, M., Michely, Th., and Comsa, G., Phys. Rev. Lett. 72, 1682 (1994); Th. Michely, and C. Teichert, Phys. Rev. B 50, 11156 (1994).Google Scholar
13. Bott, M., Hohage, M., Morgenstern, M., Michely, Th., and Comsa, G., Phys. Rev. Lett. 76, 1304 (1996).Google Scholar
14. Ziegler, J. F., TRIM94 (IBM Research Divison, Yorktown Heights, NY)Google Scholar
15. Thompson, M. W., Phil. Mag. 18, 377 (1968)Google Scholar
16. Wucher, A., Wahl, M., Nucl. Instr. Meth. B 115, 581 (1996).Google Scholar
17. Ehrlich, G., Hudda, F. G., J. Chem. Phys. 44, 1039 (1966); R. L. Schwoebel, E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).Google Scholar
18. e. g. Villarba, M., Jónsson, H., Surf. Sci. 317, 15 (1994); J. Jacobsen, K. W. Jacobsen, P. Stoltze, J. K. Nørskov, Phys. Rev. Lett. 74, 2295 (1995)Google Scholar
19. Kalff, M., Comsa, G., and Michely, Th., in preparationGoogle Scholar