Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T05:03:57.414Z Has data issue: false hasContentIssue false

Effect of Dielectric Pore Size Distribution on Interfacial Adhesion of the Tantalum-Porous Dielectric Interface

Published online by Cambridge University Press:  01 February 2011

Get access

Abstract

In this work we report the adhesion of a thin Tantalum (Ta) barrier films deposited on nanoporous dielectric substrates (Xerogel and Methyl Silesquioxanes (MSQ)). The high compressive stresses in the Ta barrier layer lead to spontaneous delamination from the underlying substrate resulting in a telephone cord like morphology, which allows the measurement of critical interfacial adhesion (fracture) energy. The fracture energy of Ta barrier films on different porous substrates is evaluated using the above two methods and the resulting differences are explained. Fracture energy varies inversely as a power law with the dielectric pore size indicating pores are essential to delamination in the barrier-dielectric interface. The observed trend of fracture energy is related to other mechanical properties of the porous substrate offering insights into the underlying mechanisms governing fracture of films deposited on porous substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nicolet, M.A., Thin Solid Films, 52 (1978) 415.Google Scholar
2. Kolawa, E., Chen, J. S., Reid, J. S., Pokela, P. J. and Nicolet, M.A., J. Appl. Phys., 70 (1991) 1369.Google Scholar
3. Holloway, K. and Fryer, P., Appl. Phys. Lett., 57 (1990) 1736.Google Scholar
4. Ma, Q., J. Mater. Res., 12(3) (1997) 840.Google Scholar
5. Moody, N. R., Hwang, R. Q., Venka-taraman, S., Angelo, J. E., Norwood, D. P. and Gerberich, W. W., Acta mater., 46(2) (1998) 585.Google Scholar
6. Xu, G., He, M.Y. and Clarke, D. R., Acta Mater., 47(15) (1999) 4131.Google Scholar
7. Lane, M. and Dauskardt, R. H., J. Mater. Res., 15 (1) (2000) 203.Google Scholar
8. Lane, M., Dauskardt, R. H., Vainchtein, A. and Gao, H., J. Mater. Res., 15(12) (2000) 2758.Google Scholar
9. Lee, J. A., Wetzel, J. T., Merrill, C. and Ho, P. S., Proc. Mat. Res. Soc., 716 (2002) B12.12.Google Scholar
10. Kloster, G., Scherban, T., Xu, G., Blaine, J., Sun, B. and Zhou, Y., 2002 IEEE Int. Interconnect Tech. Conf. Proc., (2002) 242.Google Scholar
11. Xu, G., He, J., Andideh, E., Bielefeld, J. and Scherban, T., 2002 IEEE Int. Interconnect Tech. Conf. Proc., (2002) 57.Google Scholar
12. Vella, J. B., Adhihetty, I. S., Junker, K. and Volinsky, A. A., Int. J. Frac., 119/120 (2003) 487.Google Scholar
13. Plawsky, J. L., Jain, A., Rogojevic, S. and Gill, W. N., Interlayer Dielectrics for Semiconductor Technologies, Murarka, S., Sinha, Eisenberg (Editors), Elsevier Inc. (2003).Google Scholar
14. Maex, K., Baklanov, M. R., Shamiryan, D., lacopi, F., Brongersma, S. H. and Yanovitskaya, Z. S., J. Appl. Phys., 93(11) (2003) 8793.Google Scholar
15. Hutchinson, J. W. and Suo, Z., Adv. Appl. Mech., 29 (1991) 63.Google Scholar
16. Thouless, M. D., IBM J. Res. Devlop., 38(4) (1994) 367.Google Scholar
17. Volinsky, A. A., Moody, N. R. and Gerberich, W. W., Acta Mater., 50 (2002) 441.Google Scholar
18. Lane, M., Annu. Rev. Mater. Res., 33 (2003) 29.Google Scholar
19. Jain, A., Rogojevic, S., Ponoth, S., Agarwal, N., Matthew, I., Gill, W.N., Persans, P., Tomozawa, M., Plawsky, J.L., Simonyi, E., Thin Solid Films, 398-399 (2001) 513.Google Scholar
20. Baklanov, M. R. and Mogilnikov, K. P., Microelectronic Engineering, 64 (2002) 335.Google Scholar
21. Saxena, R., Rodriguez, O., Cho, W., Mogilnikov, K. P., Baklanov, M. R., Gill, W. N. and Plawsky, J. L., J. Non-Crystalline Solids, 349 (2004) 189.Google Scholar
22. Lane, M., Dauskardt, R. H., Vainchtein, A. and Gao, H., J. Mater. Res., 15(12) (2000) 2758.Google Scholar
23. Saxena, R., Cho, W., Rodriguez, O., Gill, W. N. and Plawsky, J. L., Proc. Mater. Res. Soc., F3. 12 (2004)Google Scholar
24. Evans, A. G. and Hutchinson, J. W., Int. J. Solids Structures, 20(5) (1984) 455.Google Scholar
25. Charalambides, P. G., Lund, J., Evans, A. G., McMeeking, R. M., J. Appl. Mech., 56 (1989) 77.Google Scholar
26. Gioia, G. and Ortiz, M., Adv. Appl. Mech., 33 (1997) 119.Google Scholar
27. Lee, A., Litteken, C. S., Dauskardt, R. H. and Nix, W. D., Acta Materialia, 53 (2005) 609.Google Scholar
28. Jain, A., Rogojevic, S., Gill, W.N., Plawsky, J. L., Matthew, I., Tomozawa, M. and Simonyl, E., J. Appl. Phys., 90(11) (2001) 5832.Google Scholar