Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T05:29:25.975Z Has data issue: false hasContentIssue false

The Effect of Forming Gas Annealing on Pt/(Ba,Sr)TiO3/Pt Thin Film Capacitors for Future Dram Applications: Electrical Properties and Degradation Mechanisms

Published online by Cambridge University Press:  21 March 2011

J. D. Baniecki
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, 1580 Route 52, Hopewell Junction, NY 12533
C. Parks
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, 1580 Route 52, Hopewell Junction, NY 12533
R.B. Laibowitz
Affiliation:
IBM Research Div, Yorktown Heights, NY 10598
T. M. Shaw
Affiliation:
IBM Research Div, Yorktown Heights, NY 10598
J. Lian
Affiliation:
Infineon Technologies, 1580 Route 52, Hopewell Junction, NY 12533
Get access

Abstract

We have used electrical characterization and secondary ion mass spectroscopy (SIMS) to investigate the influence of hydrogen or deuterium (H/D) on the degradation of the electrical properties of Pt/Ba0.7Sr0.3TiO3/Pt thin film capacitors after forming gas exposure. Deuterium SIMS depth profiling shows that high deuterium concentrations can be incorporated into Pt/BSTO/Pt capacitors after forming gas annealing. The increase in H/D concentration in the film is accompanied by an increase in the leakage and dielectric relaxation current density. Voltage offsets in the capacitance-applied voltage (C-VA) characteristics after forming gas exposure at lower temperatures (20 °C) and a suppression in the capacitance density near zero applied D.C. bias after forming gas exposure at higher temperatures, suggests that one effect of forming gas exposure to Pt/BSTO/Pt thin film capacitors is to introduce positive space charge into the BSTO film. Using an equivalent model for a ferroelectric thin film capacitor, which incorporates lower permittivity interfacial layers and a nonlinear electric field-electric displacement relationship for the film interior, the effects of a uniform distribution of positive space charge on the theoretical C-VA and current density applied voltage (J-VA) characteristics are investigated. It is shown the model can account for many of the observed changes that occur in the experimental C-VA and J-VA characteristics after forming gas exposure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

Present address: Fujitsu Laboratories, Atsugi, Japan

References

[1] Kushida-Abdelghafar, K., Miki, H., Torii, K., and Fujisaki, Y., Appl. Phys. Lett. 69, 3188 (1996)Google Scholar
[2] Fujisaki, Y., Kushida-Abdelghafar, K., Shimamoto, Y., and Miki, H., J. Appl. Phys. 82, 341 (1997)Google Scholar
[3] Han, J.P. and Ma, T.P., Integrated Ferroelectrics 17, 471 (1997)Google Scholar
[4] Baniecki, J.D. Laibowitz, R. B., Shaw, T. M., Saenger, K. L., Duncombe, P. R., Cabral, C. Kotecki, D.E. Shen, H., Lian, J., and Ma, Q.Y., J. European Ceramic Society Vol. 19, Issue 6-7, 1457 (1999)10.1016/S0955-2219(98)00449-XGoogle Scholar
[5] Gilbert, S.R., Tang, S.P., Okuno, Y., Colombo, L., Chen, P., Summerfelt, S.R., and Moise, T.S., Presented at the Materials Research Society Meeting, Boston, MA, Fall (1999)Google Scholar
[6] Ahn, J. H., McIntyre, P.C., Mirkarimi, L. W., Gilbert, S.R., Amano, J., and Schulberg, M., Appl. Phys. Lett. 77, 1378 (2000)Google Scholar
[7] Baniecki, J. D., Parks, C., Laibowitz, R.B., Shaw, T. M., Lian, J., and Costrini, G., Mat. Res. Soc. Symp. Proc. Vol. 596, 25 (2000)10.1557/PROC-596-25Google Scholar
[8] Liedtke, R., Grossmann, M., and Waser, R., Appl. Phys. Lett. 77, 2045 (2000)Google Scholar
[9] Im, J., Auciello, O., Krauss, A.R., Gruen, D.M., Chang, R.P.H., Kim, S.H., and Kingon, A.I., Appl. Phys. Lett. 74, 1162 (1999)Google Scholar
[10] Aggarwal, S., Perusse, S.R., Drew, H.D., Venkatesan, T., Ramesh, R., Romero, D.B., Podobedov, V.B., and Weber, A., Appl. Phys. Lett., Vol. 73, 1973 (1998)10.1063/1.122339Google Scholar
[11] Tan, O.K., Zhu, W., Tse, M.S., and Yao, X., Matls. Sci. and Eng. B58, 221 (1999)Google Scholar
[12] Kotecki, D.E., Baniecki, J.D., Shen, H., Laibowitz, R.B., Saenger, K.L., Lian, J.J., Shaw, T.M., Athavale, S.D., Cabral, C. Jr, Duncombe, P.R., Gutsche, M., Kunkel, G., Park, Y.J., Wang, Y., and Wise, R., IBM J. Res. Develop. 43, 367 (1999)Google Scholar
[13] Shaw, T.M., Baniecki, J.D., Laibowitz, R.B., Liniger, E., Suo, Z., M Huang, Kotecki, D.E., and Shen, H., Program Summary and Extended Abstracts of the 9th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, 179 (1999)Google Scholar
[14] Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A. I., J. Appl. Phys. 82, 2359 (1997)Google Scholar
[15] Hwang, C.S., Lee, B. T., Kang, C. S., Kim, J. W., Lee, K. H., Cho, H. J., Horii, H., Kim, W. D., Lee, S. I., Roh, Y. B., and Lee, M. Y., J. Appl. Phys. 83, 3703 (1998)Google Scholar
[16] Dietz, G.W. and Waser, R., Thin Solid Films, Vol. 299, 53 (1997)10.1016/S0040-6090(96)09073-6Google Scholar
[17] Shin, J. C., Park, J., Hwang, C.S., Kim, H. J., J. Appl. Phys. 86, 506 (1999)Google Scholar
[18] Norby, T., Solid State Ionics 40/41, 857 (1990)10.1016/0167-2738(90)90138-HGoogle Scholar
[19] Waser, R., Ber. Bunsenges. Phys. Chem. 90, 1223 (1986)Google Scholar
[20] Waser, R., J. Am. Ceram. Soc. 71, 58 (1988)Google Scholar
[21] Yamada, H. and Miller, G.R., J. Solid State Chem. 6, 169 (1973)Google Scholar
[22] Hagemann, H.J. and Hennings, D., J. Am. Ceram. Soc., Vol. 64, No. 10, 590 (1980)Google Scholar
[23] Zhou, C. and Newns, D.M., J. Appl. Phys. 82, 3081 (1997)Google Scholar
[24] Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., Kingon, A.I., J. Appl. Phys., Vol.86, 4565 (1999)Google Scholar
[25] Lines, M.E. and Glass, A. M., “Principles and Applications of Ferroelectrics and Related Materials”, Clarendon Press, Oxford, 71 (1977)Google Scholar
[26] Basceri, C., Streiffer, S.K., and Kingon, A. I., J. Appl. Phys. 82, 2497 (1997)Google Scholar
[27] Kao, K.C. and Hwang, W., Electrical Transport in Solids, Pergamon Press, New York, (1981)Google Scholar
[28] Kahng, D. and Wemple, S.H., J. Appl. Phys. 36, 2925 (1965)Google Scholar
[29] Copel, M., Duncombe, P.R., Neumayer, D.A., Shaw, T.M., and Tromp, R.M., Appl. Phys. Lett. 70, 3227 (1997)Google Scholar
[30] Bratkovsky, A.M. and Levanyuk, A.P., Phys. Rev. B, Vol. 61, 15042 (2000)10.1103/PhysRevB.61.15042Google Scholar
[31] Simmons, J.G., J. Appl. Phys. 35, 2472 (1964)Google Scholar
[32] Zafar, S., Jones, R.E., Jiang, B., White, B., Kaushik, V., and Gillespie, S., Appl. Phys. Lett. 73, 3533 (1998)Google Scholar
[33] Sze, S.M., “Physics of Semiconductor Devices”, John Wiley and Sons, 246311 (1981)Google Scholar
[34] Murphy, E.L. and Good, R.H., Phys. Rev. 102, 1464 (1956)10.1103/PhysRev.102.1464Google Scholar
[35] Baniecki, J.D., Laibowitz, R.B., Shaw, T.M., Lian, J., Xu, W., and Ma, Q.Y., submitted to J. Appl. Phys. (2000)Google Scholar