Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T14:02:26.507Z Has data issue: false hasContentIssue false

The effect of H2 distribution in (Pb,La)(Zr,Ti)O3 capacitors with conductive oxide electrodes on the degradation of ferroelectric properties

Published online by Cambridge University Press:  18 March 2015

Yoko Takada
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Naoki Okamoto
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Takeyasu Saito
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Kazuo Kondo
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Takeshi Yoshimura
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531, Japan
Norifumi Fujimura
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531, Japan
Koji Higuchi
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
Akira Kitajima
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
Hideo Iwai
Affiliation:
Materials Analysis Station, National Institute for Materials Science, Tsukuba 305-0047, Japan
Get access

Abstract

We fabricated ferroelectric (Pb,La)(Zr,Ti)O3 (PLZT) capacitors with Sn:In2O3 (ITO) top electrodes using chemical solution deposition. Then, the effects of a thin conductive ITO buffer layer between the Pt bottom electrode and PLZT thin film were investigated in combination with top electrode (ITO/PLZT/ITO/Pt). The H2 degradation resistance of ITO/PLZT/ITO/Pt capacitors with a 3- and 28-nm-thick buffer layer was improved to 78 and 85%, respectively, from 60% without a buffer layer. The time-of-flight secondary ion mass spectrometry profiles indicated the intensity of H ion increased after 45 min forming gas (3% H2/balance N2) annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, K. et al. ., Microelectron. Reliab. 43, 385 (2003).CrossRefGoogle Scholar
Fujisaki, Y., Jpn. J. Appl. Phys. 52, 040001 (2013).CrossRefGoogle Scholar
Arimoto, Y. et al. ., MRS Bull. 29, 823 (2004).CrossRefGoogle Scholar
Jia, Z. et al. ., J. Phys. D: Appl. Phys. 39, 2587 (2006).CrossRefGoogle Scholar
Zhang, M.-M. et al. ., Solid-State Electron. 53, 473 (2009).CrossRefGoogle Scholar
Guo, R. et al. ., Nat. Commun. 4, 1990 (2013).CrossRefGoogle Scholar
Yoon, S.-G. et al. ., J. Mater. Res. 16, 1185 (2001).CrossRefGoogle Scholar
Kushida-Abdelghafar, K. et al. ., Jpn. J. Appl. Phys. 36, L1032 (1997).CrossRefGoogle Scholar
Chung, S.-O. et al. ., Jpn. J. Appl. Phys. 39, 1203 (2000).CrossRefGoogle Scholar
Vijay, D. P. et al. ., J. Electrochem. Soc. 140, 2640 (1993).CrossRefGoogle Scholar
Shimamoto, Y. et al. ., Appl. Phys. Lett. 70, 3096 (1997).CrossRefGoogle Scholar
Fujisaki, Y. et al. ., J. Appl. Phys. 82, 341 (1997).CrossRefGoogle Scholar
Aggarwal, S. et al. ., Appl. Phys. Lett. 73, 1973 (1998).CrossRefGoogle Scholar
Hui, W. et al. ., Phys.. Status Solidi A 209, 1109 (2012).CrossRefGoogle Scholar
Aggarwal, S. et al. ., Appl. Phys. Lett. 74, 3023 (1999).CrossRefGoogle Scholar
Joo, H. J. et al. ., Ferroelectrics 272, 149 (2002).CrossRefGoogle Scholar
Niwa, K. et al. ., Acta Mater. 48, 4755 (2000).CrossRefGoogle Scholar
Seo, S. et al. ., Appl. Phys. Lett. 81, 1857 (2002).CrossRefGoogle Scholar
Han, J.-P. et al. ., Appl. Phys. Lett. 71, 1267 (1997).CrossRefGoogle Scholar
Huang, C.-K. et al. ., J. Appl. Phys. 98, 104105 (2005).CrossRefGoogle Scholar
Kim, D.-C. et al. ., Jpn. J. Appl. Phys. 41, 1470 (2002).CrossRefGoogle Scholar
Kerkache, L. et al. ., J. Alloys Compd. 509, 6072 (2011).CrossRefGoogle Scholar
Rao, A. V. et al. ., Mater. Lett. 29, 255 (1996).CrossRefGoogle Scholar
Kerkache, L. et al. ., J. Phys. D: Appl. Phys. 39, 184 (2006).CrossRefGoogle Scholar
Takada, Y. et al. ., Int. J. mater. Res. 106, 83 (2015).CrossRefGoogle Scholar
Takada, Y. et al. ., Electron. Lett. 50, 799 (2014).CrossRefGoogle Scholar
Lee, E. S. et al. ., J. Appl. Phys. 100, 024107 (2006).CrossRefGoogle Scholar
Kim, T. S. et al. ., J. Vac. Sci. Technol. A 15, 2831 (1997).CrossRefGoogle Scholar
Bhaskar, A. et al. ., Appl. Surf. Sci. 255, 3795 (2009).CrossRefGoogle Scholar
Yoon, K. H. et al. ., J. Appl. Phys. 83, 3626 (1998).CrossRefGoogle Scholar
Liang, C.-S. et al. ., Electrochem. Solid-State Lett. 8, F29 (2005).CrossRefGoogle Scholar
Hartner, W. et al. ., Appl. Phys. A 77, 571 (2003).CrossRefGoogle Scholar
Cross, J. S. et al. ., J. Appl. Phys. 98, 094107 (2005).CrossRefGoogle Scholar