No CrossRef data available.
Article contents
Effect of Hydrogen Dilution on Structure and Electronic Properties of Ge:H and GeYSi1-Y Films Deposited by Low Frequency Plasma
Published online by Cambridge University Press: 01 February 2011
Abstract
We report on a systematical study of growth rate, surface morphology, hydrogen and oxygen incorporation, optical and electrical properties in Ge:H and GeYSi1-Y:H, Y> 0.85 films, deposited in a capacitive reactor by low frequency PE CVD. Silane and germane were used as feed gases diluted by hydrogen. Hydrogen dilution characterized by R= QH2/[QSiH4+QGeH4], where QH2, QSiH4, and QGeH4 are gas flows of hydrogen, silane and germane, respectively. The flow was varied in the range of R=20 to 80. Composition of the films was characterized by SIMS profiling. We did not observed a significant change of the deposition rate Vd in GeYSi1-Y:H films in all the range of R, while for Ge:H films Vd was significantly reduced after R=50. AFM characterization of the surface morphology demonstrated that at R=50 average height <H>(R) reached maximum in both Ge:H and GeYSi1-Y:H films, while average diameter <D>(R) had a minimum in GeYSi1-Y:H films and maximum in Ge:H films. Both Ge:H and GeYSi1-Y:H films demonstrated change of E04 in the studied range of R, and a minimum clearly appeared in E at R=50-60 suggesting significant reduction in weak bonds of these films. The activation energy of conductivity Ea slightly increases with R in Ge:H films and shows no definitive trend in GeYSi1-Y:H: films. Both FTIR and SIMS data show a general trend of reducing hydrogen and oxygen content with R. These two types of films showed different behavior and correlations between surface morphology and optical and electrical properties.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006