Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:22:31.464Z Has data issue: false hasContentIssue false

Effect of Nitrogen and Oxygen Impurities on Tantalum Silicide Formation

Published online by Cambridge University Press:  22 February 2011

K. T. Ho
Affiliation:
California Institute of Technology, Pasadena, California 91125, U.S.A.
C.-D. Lien
Affiliation:
California Institute of Technology, Pasadena, California 91125, U.S.A.
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, California 91125, U.S.A.
D. M. Scott
Affiliation:
University of California at San Diego, La Jolla, California 92093, U.S.A.
Get access

Abstract

Tantalum, being a refractory metal, is sensitive to ambient impurities when forming a silicide. By introducing nitrogen and oxygen impurities into a tantalum-silicon system, interesting chemical and physical effects are observed in their subsequent reactions. Nitrogen and oxygen behave similarly in such a system. If initially present in Ta, they segregate into the still unreacted Ta as the silicide layer grows at a somewhat retarded rate. The same impurities, initially present in Si, are immobile in the form of stable compouis and suppress TaSi2 growth. The rare isotopes 15N and 18O are introduced bY implantation and Profiled by 15N(P,α)12C and 18O(P,α)15N nuclear reaction analyses, respectively. In addition, unintentionally incorporated 18O is checked by the 16O(d,α) 14N nuclear reaction. The results are explained in terms of the moving species Si, and of the chemical affinity, solubility and diffusivity of the impurities in their host lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lien, C.-D. and Nicolet, M-A. in: Proceedings of the Workshop on Refractory Metal Silicides for VLSI, San Juan Bautista, California - September 1983, (University of California Extension, Berkeley, 1983).Google Scholar
2. Canali, C., Catellana, C., Prudenziati, M., Wadlin, W. H., and Evans, C. A. Jr., Appl. Phys. Lett. 31, 43 (1977).Google Scholar
3. Schultz, R. J. and Testardi, L. R., J. Appl. Phys. 50, 5773 (1979).Google Scholar
4. Bomchil, G., Bensahel, D., Golanski, A., Ferriell, F., Auvert, G., Perio, A., and Pfister, J. C., Appl. Phys. Lett. 41, 46 (1982).Google Scholar
5. Tu, K. N., Thompson, R. D., and Tsaur, B. Y., Appl. Phys. Lett. 38, 626 (1981).Google Scholar
6. Wieluński, L. S., Lien, C.-D., Liu, B. X., and Nicolet, M-A. in: Metastable Materials Formation by Ion Implantation, Picraux, S. T. and Choyke, W. J., eds. (North-Holland, New York, 1982), MRS Symposia Proceedings Vol. 7, p. 139.Google Scholar
7. Ho, K. T., Nicolet, M-A., and Wieluński, L., Thin Solid Films, 104, 243 (1983).Google Scholar
8. Lien, C.-D., Wielurński, L. S., and Nicolet, M-A., Thin Solid Films, 104, 235 (1983).CrossRefGoogle Scholar
9. Scott, D. M. and Nicolet, M-A., Nucl. Tnstr. Meth. 182/183, 655 (1981).Google Scholar
10. Tu, K. N. and Mayer, J. W. in: Thin Films - Interdiffusion and Reactions, Poate, J. M., Tu, K. N., and Mayer, J. W., eds. (Wiley, New York, 1978), p. 359.Google Scholar
11. Petersson, C. S., Baglin, J. E. E., d'Heurle, F. M., Dempsey, J. J., Harper, J. M. E., Serrano, C. M., and Tsai, M. Y. in: Thin Films and Interfaces, Baglin, J. E. E. and Poate, J. M., eds. (The Electrochemical Society, Princeton, 1980), Vol. 80–2, p. 290.Google Scholar
12. Kraütle, H., Nicolet, M-A., and Mayer, J. W., J. Appl. Phys. 45, 3304 (1974).Google Scholar
13. Guldan, A., Schiller, V., Steffen, A., and Balk, P., Thin Solid Films, 100, 1 (1983).CrossRefGoogle Scholar
14. Biersack, J. P., Nucl. Instr. Meth. 182/183, 199 (1981).Google Scholar
15. Picraux, S. T., Nucl. Instr. Meth. 149, 289 (1978).Google Scholar
16. Elliott, R. P., Constitution of Binary Alloys, First Supplement, McGraw-Hill, New York, 1965.Google Scholar
17. Hansen, M. and Anderko, K., Constitution of Binary Alloys, McGraw-Hill, New York, 1958.CrossRefGoogle Scholar
18. Kelly, R., J. Vac. Sci. Technol. 21, 778 (1982).Google Scholar
19. d'Avitaya, F. Arnaud, Bomchil, G., and Arena, C., Extended Abstracts of The Electrochemical Society Spring Meeting (May 1983), #389; (to be published in Proceedings of The Electrochemical Society).Google Scholar
20. Tsujide, T., Nojiri, M., and Kitagawa, H., J. Appl. Phys. 51, 1605 (1980).Google Scholar
21. Grunthaner, P. J., Grunthaner, F. J., Scott, D. M., Nicolet, M-A., and Mayer, J. W., J. Vac. Sci. Technol. 19, 641 (1981).Google Scholar
22. Pretorius, R., Harris, J. M., and Nicolet, M-A., Solid-State Electron. 21, 667 (1978).Google Scholar