Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:36:18.744Z Has data issue: false hasContentIssue false

Effect of Nitrogen implantation on the optical characteristics of Zn0.85Mg0.15O thin film at low temperature

Published online by Cambridge University Press:  10 July 2015

S. Saha
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
S. Nagar
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
S. Chakrabarti
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
Get access

Abstract

The importance of ZnxMg1-xO is increasing day by day because of its wider bandgap than ZnO. This ternary semiconductor finds its application in the fields of optoelectronics, spintronics, superlattices due to its unique blueshifted UV-luminescent property. n- to p-type conduction which is the motive of the project can be achieved with increasing Mg content in ZnMgO. The optical characteristics of the nitrogen doped ZnxMg1-xO (x=0.85) grown on 2 inch Si <100>wafer by RF sputtering are studied and analyzed thoroughly using low temperature (15K) photoluminescence measurements. Nitrogen implantation was carried out by Plasma immersion Ion Implantation technique on the sample. Rapid Thermal Process was employed to remove defects resulting from implantation. The samples were annealed at 700°C, 800°C, 900°C, and 1000o C for 10 seconds in an oxygen ambient. Photoluminescence (PL) measurements were performed at low temperature (15K) which exhibited acceptor-bound-exciton peak (A°X) and donor-bound-acceptor pair (DAP) at 3.336 eV and 3.236 eV respectively. At 3.364 eV, S peak was found for the sample annealed at 800°C after implantation. This peak was attributed to the existence of ZnO-like composition. Localized and de-localized exciton peaks were found around 3.42 and 3.45 eV respectively. This result is very important because though dominant acceptor peak was not found but proper optimization of the parameters can lead to p-type ZnMgO which is the main motive of this project.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y., and Goto, T., Appl. Phys. Lett. 70, 2230 (1997).CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Sakurai, Y., Ohkubo, I., Shiroki, R., Mater.Sci. Eng. B 56, 263 (1998).CrossRefGoogle Scholar
Chen, Y.F., Bagnall, D.M., Koth, H.J., Park, K.T., Hiraga, K., Zhu, Z., Yao, T., J.Appl.Phys. 84. 3912 (1998).CrossRefGoogle Scholar
Park, W.I., Kim, D.H., Jung, S.W., Yi, Gyu-Chul, Appl.Phys.Lett. 80,4232 (2002).CrossRefGoogle Scholar
Kim, K.S., Kim, S.H., Lee, D.R., Appl.Phys.Lett..76, 1552 (2000).CrossRefGoogle Scholar
Chou, T.L., Wu, W.Y., Ting, J.M. Thin Solid Films 518, 1553(2009).CrossRefGoogle Scholar
Shin, S.W., Sim, Ku, Pawar, S.M., Moholkar, A.V., Jung, I.O., Yun, J.H., Moon, J.H., Kim, J.H., Lee, J.Y., J.Cryst.Growth 312, 1551(2010).CrossRefGoogle Scholar
Rau, U., Schmidt, M., Thin Solid Films 387, 141(2000).CrossRefGoogle Scholar
Sivalingam, D., Gopalakrishnan, J.B., Rayappan, J.B.B., Mater. Lett. 77, 117 (2012).CrossRefGoogle Scholar
Banger, K.K., Yamashita, Y., Mori, K., Peterson, R.L., Leedham, T., Rickard, J., Sirringhaus, H., Nat. Mater. 10, 45, (2011).CrossRefGoogle Scholar
Zhang, Y., Du, G., Liu, D., Zhu, H., Cui, Y., Dong, X., Yang, S., J. Cryst. Growth 268, 140 (2004).CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T. and Segawa, Y. Appl. Phys. Lett. 72, 2466 (1998).CrossRefGoogle Scholar
Zhao, D., Liu, Y., Shen, D., Lu, Y., Zhang, J., and Fan, X. J. Appl. Phys. 90, 11 (2011).Google Scholar
Gruber, Th., Kirchner, C., Kling, R., Reuss, F., Waag, A., Bertram, F., Forster, D., Christen, J. and Schreck, M., Appl. Phys. Lett. 83, 3290 (2003).CrossRefGoogle Scholar
Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
Bhattacharya, P., Das, Rasmi R., and Katiyar, R. S., Appl. Phys. Lett. 83, 2010 (2003).CrossRefGoogle Scholar
Gu, X. Q., Zhu, L. P., Ye, Z. Z., He, H. P., Zhang, Y. Z., Huang, F., Qiu, M. X., Zeng, Y. J., Liu, F., and Jaeger, W., Appl. Phys. Lett. 91, 022103 (2007).CrossRefGoogle Scholar
Zhang, S. B., Wei, S.-H., and Zunger, Alex, Phys. Rev B. 63, 075205 (2001)CrossRefGoogle Scholar
Ryu, Y., Lee, T.-S., Lubguban, Jorge A., White, Henry W., Kim, B.-J., Park, Y.-S., Youn, C.-J., Appl. Phys. Lett. 88 , 241108, (2006).CrossRefGoogle Scholar
Lim, J.H., Kang, C.K., Kim, K.K., Park, I.K., Hwang, D.K., Park, S.J., Adv. Mater. 18 , 2720, (2006).CrossRefGoogle Scholar
Zeng, Y.J., Ye, Z.Z., Xu, W.Z., Li, D.Y., Lu, J.G., Zhu, L.P., Zhao, B.H., Appl. Phys. Lett. 88 , 062107, (2006).CrossRefGoogle Scholar
Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B., Cantwell, G., Appl. Phys. Lett. 81 , 1830, (2002).CrossRefGoogle Scholar
Ryu, Y.R., Lee, T.S., White, H.W., Appl. Phys. Lett. 83 ,87, (2003).CrossRefGoogle Scholar
Heo, Y.W., Kwon, Y.W., Li, Y., Pearton, S.J., Norton, D.P., Appl. Phys. Lett. 84, 3474, (2004).CrossRefGoogle Scholar
Wei, Z.P., Yao, B., Zhang, Z.Z., Lu, Y.M., Shen, D.Z., Li, B.H., Wang, X.H., Zhang, J.Y., Zhao, D.X., Fan, X.W., Tang, Z.K., Appl. Phys. Lett. 89, 102104, (2006).CrossRefGoogle Scholar
Wang, P., Chen, N., Yin, Z., Dai, R., Bai, Y., Appl. Phys. Lett. 89 , 202102, (2006).CrossRefGoogle Scholar
Zhang, Y.Z, He, H.P, Ye, Z.Z, Huang, H.H , Lu, J.G , Qiu, M.X , Zhao, B.H , Zhu, L.P, Huang, J.Y, Mater. Lett. 62, 1418 (2008).CrossRefGoogle Scholar
Friedrich, F. and Nickel, N. H., Appl. Phys. Lett. 91, 111903, (2007).CrossRefGoogle Scholar
Heo, Y.W., Kwon, Y.W., Li, Y., Pearton, S. J. and Norton, D.P., “p- Type behavior in phosphorus-doped (Zn,Mg)O device structures,” Appl. Phys. Lett. 84, 34743476 (2004).CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T. and Segawa, Y., “MgxZn1–xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett. 72, 24662468 (1998).CrossRefGoogle Scholar
Henini, M. [Molecular Beam Epitaxy: From Research to Mass Production], Elsevier Science Publishing Co., Inc., MA, (2012).Google Scholar
Vaithianathan, V., Lee, Y. H., Lee, B. T., Hishita, S. and Kim, S. S., “Doping of As, P and N in laser deposited ZnO film,” J. Cryst. Growth. 287, 85 (2006).CrossRefGoogle Scholar
Duan, X. Y., Yao, R. H. and Zhao, Y. J., “The mechanism of Li, N dual- acceptor co-doped p-type ZnO,” Appl. Phys. A. 91, 467, 2008.CrossRefGoogle Scholar
Bing, L., Zhendong, H., Yong, C. and Yuzuru, U. Eur. Pat. Appl. EP 2 230 324 A1, issued (2010).Google Scholar
Willander, M., Nur, O., Sadaf, J. R., Qadir, M. I., Zaman, S., Zainelabdin, A., Bano, N. and Hussain, I., “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials, 3, 26432667 (2010).CrossRefGoogle Scholar
Saha, S., Nagar, S., and Chakrabarti, S., Appl. Phys. Lett. 105, 061109 (2014).CrossRefGoogle Scholar
Chu, Paul K., Qin, Shu, Chan, Chung, Cheung, Nathan W., Lawrence, A. Larson Materials Science and Engineering, R17, 207, (1996).CrossRefGoogle Scholar
Fan, JC, Zhu, CY, Yang, B, Fung, S, Beling, CD, Brauer, G, Anwand, W, Grambole, D, Skorupa, W, Wong, KS, Zhong, YC, Xie, Z, Ling, CC. J. Vac. Sci. Technol. A 29, 03A103 (2011).CrossRefGoogle Scholar
Fan, JC, Zhu, CY, Yang, B, Fung, S, Beling, CD, Brauer, G, Anwand, W, Grambole, D, Skorupa, W, Wong, KS, Zhong, YC, Xie, Z, Ling, CC. Semicond. Sci. Technol. 25 , 085009 (5pp) (2010) .CrossRefGoogle Scholar
Céline, Chevalier, (FR) Echirolles Method of preparing p-type doped Zno or ZnMgO US 8,163,636 B2 Google Scholar
Schleife, A, Rödl, C, Furthmüller, J, Echstedt, F. New Journal of Physics 13 , 085012 (24 pp) (2011).CrossRefGoogle Scholar
Zhu, H, Shan, CX, Li, BH, Zhang, ZZ, Zhang, JY, Yao, B, Shen, DZ, Fan, XW. J. Appl. Phys 105, 103508 (2009).CrossRefGoogle Scholar
Chang, YS, Chien, CT, Chen, CW, Chu, TY, Chiang Ku, CH, Wu, JJ, Lin, CS, Chen, LC, Chen, KH. J. Appl. Phys 101, 033502(2007).CrossRefGoogle Scholar
Laumer, B, Wassner, TA, Schuster, F, Stutzmann, M, Schörmann, J, Rohnke, M, Chernikov, A, Bornwasser, V, Koch, M, Chatterjee, S, Eickhoff, M. J. Appl. Phys 110, 093513 (2011).CrossRefGoogle Scholar