Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T20:01:28.012Z Has data issue: false hasContentIssue false

The effect of Oxygen partial pressure during deposition in the magnetic properties of ZnO thin film

Published online by Cambridge University Press:  14 January 2011

Anis Biswas
Affiliation:
Department of Materials Science-Tmfy-MSE, The Royal Institute of Technology, S- 100 44, Stockholm, Sweden
Wang Shirong
Affiliation:
Department of Materials Science-Tmfy-MSE, The Royal Institute of Technology, S- 100 44, Stockholm, Sweden
Sandeep Nagar
Affiliation:
Department of Materials Science-Tmfy-MSE, The Royal Institute of Technology, S- 100 44, Stockholm, Sweden
L. Belova
Affiliation:
Department of Materials Science-Tmfy-MSE, The Royal Institute of Technology, S- 100 44, Stockholm, Sweden
K. V. Rao
Affiliation:
Department of Materials Science-Tmfy-MSE, The Royal Institute of Technology, S- 100 44, Stockholm, Sweden
Get access

Abstract

We have studied the magnetic properties of 100 nm thick ZnO thin films prepared by magnetron sputtering in different oxygen partial pressures (ratio of oxygen pressure to total pressure in deposition chamber, POxy). Only the films fabricated at POxy below ~ 0.5 show room temperature ferromagnetism. The saturation magnetization at room temperature is initially found to increase as POxy increases and reaches maximum value of ~ 5 emu/gm at POxy ~ 0.3 and then starts to decrease and becomes diamagnetic for POxy > 0.5. From small angle XRD study of structural properties of the films, we find that the lattice stress developed in the film along c-axis also exhibits a similar behavior with the variation of POxy. Thus, both the room temperature ferromagnetism and lattice stress appear to originate from the intrinsic defects present in the sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Osorio Guillen, J. M., Johansson, B., and Gehiring, G. A., Nat. Mat., 2, 674 (2003)Google Scholar
2. Hong, N. H., Sakai, J., Poirot, N., Brize, V., Phys. Rev. B, 73, 132404 (2006)Google Scholar
3. Kapilashrami, M., Xu, J., Strom, V., Rao, K. V., Belova, L., Appl. Phys. Lett., 95, 033104 (2009)Google Scholar
4. Kapilashrami, M., Xu, J., Biswas, A., Tamaki, T., Sharma, P., Rao, K. V., Belova, L., Mat. Lett., 64, 1291 (2010)Google Scholar
5. Banerjee, S., Mandal, M., Gayathri, N., Sardar, M., Appl. Phys. Lett., 91, 182501 (2007)Google Scholar
6. Sunderasen, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C. N., Phys. Rev. B, 74, 161306 (2006)Google Scholar
7. McCluskey, M. D., Jokela, S. J., J. Appl. Phys., 106, 071101 (2009)Google Scholar
8. Hong, N. H., Sakai, J., Poirot, N., Brize, V., Phys. Rev. B, 73, 132404 (2006)Google Scholar
9. Coey, J. M. D., Sol. State. Sc., 7, 660 (2005)Google Scholar
10. Wang, Q., Sun, Q., Cheng, G., Kawazoe, Y., Jena, P., Phys. Rev. B, 77, 205411 (2008)Google Scholar
11. Zhang, D., Fan, P., Cai, X., Huang, J., Ru, L., Zhang, Z., Liang, G., Huang, Y., Appl. Phys. A, 97, 437 (2009)Google Scholar
12. Hong, R., Qi, H., Huang, J., He, H., Fan, Z., Shao, J., Thin Film Sol., 473, 58 (2005)Google Scholar
13. Mal, S., Nori, S., Jin, C., Narayan, J., Nellutla, S., Smirnov, A. I., Prater, J. T., J. Appl. Phys., 108, 073501 (2010)Google Scholar