Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T00:55:30.505Z Has data issue: false hasContentIssue false

Effect of Pore Size on Dehydrogenation Temperature of Carbon Cryogel-Ammoniaborane Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Saghar Sepehri
Affiliation:
sepehri@u.washington.edu, University of Washington, Materials Science and Engineering, 302 Roberts Hall, Seattle, WA, 98195-2120, United States
Betzaida Batalla Garcia
Affiliation:
bbg5@u.washington.edu, University of Washington, Materials Science and Engineering, Seattle, WA, 98195-2120, United States
Guozhong Cao
Affiliation:
gzcao@u.washington.edu, University of Washington, Materials Science and Engineering, Seattle, WA, 98195-2120, United States
Get access

Abstract

This study reports the effects of pore size of porous carbon scaffold on the dehydrogenation of ammoniaborane in the coherent carbon- ammoniaborane nanocomposites. Porous carbon scaffold is obtained from resorcinol formaldehyde derived carbon cryogels. The nanocomposites are made by simple soaking porous carbon scaffold in ammonia borane solution. Nitrogen sorption analysis and differential scanning calorimetry are used to investigate the structure and dehydrogenation of the nanocomposites. The results reveal that dehydrogenation temperature decreases in nanocomposites as compared to neat ammonia borane, and is lower in nanocomoposites with smaller pore sizes. These findings can be used to tune the dehydrogenation temperature to meet specific hydrogen storage applications. Also, dehydrogenation kinetics of nanocomposites is enhanced as compared to neat ammonia borane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Satypapal, S., Petrovic, J., Read, C., Thomas, G., Ordaz, G., Catal. Today 120, 246 (2007)Google Scholar
2 Zhou, L., Renew. Sust. Energy Rev. 9, 395 (2005).Google Scholar
3 Zuttel, A., Mater. Today 6, 24 (2003).Google Scholar
4 Orimo, S., Nakamori, Y., Eliseo, J.R., Zuttel, A., Jensen, C. M., Chem. Rev. 107, 4111 (2007).Google Scholar
5 Fichtner, M., Scr Mater 56, 801 (2007).Google Scholar
6 Kabbour, H., Baumann, T. F., Satcher, J. H., Saulnier, A., Ahn, C. C., Chem. Mater. 18, 26 (2006).Google Scholar
7 Seayad, A. M., Antonelli, D. M., Adv. Mater. 16, 765 (2004).Google Scholar
8 Bogdanovic, B., Felderhoff, M., Kaskel, S., Pommerin, A., Schichte, K., Schüth, F., Adv. Mater. 15, 1012 (2003)Google Scholar
9 Züttel, A., Wenger, P., Sudan, P., Mauron, P., Ormio, S., Mater. Sci. Eng. B108, 9 (2004).Google Scholar
10 Luo, W., J. Alloys Compd. 381, 284 (2004).Google Scholar
11 Grochala, W., Edwards, P. P., Chem. Rev. 104, 1283 (2004).Google Scholar
12 Rönnerbro, E., Majzoub, E., J. Phys. Chem. B110, 25686 (2006).Google Scholar
13 Pinderton, F. E., Meisner, G. P., Meyer, M. S., Balogh, M. P., Kundrat, M. D., J. Phys. Chem. B109, 6 (2005).Google Scholar
14 Zhou, L., Zhou, Y. P., Sun, Y., Int. J. Hydrogen Energy 29, 319 (2004).Google Scholar
15 Jordá-Beneyto, M., Suárez-García, F., Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Carbon 45, 293 (2007).Google Scholar
16 Gutowska, A., Li, L., Shin, Y., Wang, C. M., Li, X. S., Linehan, J. C., Smith, R. S., Kay, B. D., Schmid, B., Shaw, W., Gutowski, M., Autrey, T., Angew. Chem., Int. Ed. 44, 3578 (2005).Google Scholar
17 Feaver, A. M., Sepehri, S., Shamberger, P., Stowe, A., Autrey, T., Cao, G. Z., J. Phys. Chem. B. 111, 7469 (2007).Google Scholar
18 Vajo, J. J. and Olson, G. L., Scr. Mater 56, 829 (2007).Google Scholar
19 Pekala, R. W., J. Mater. Sci. 24, 3221 (1989).Google Scholar
20 Tamon, H., Ishizaka, H., Yamamoto, T. and Suzuki, T., Carbon 37, 2049 (1999).Google Scholar
21Nanoporous Materials: Science and Engineering. Lu, G. Q. and Zhao, X. S., Imperial College Press (2004).Google Scholar
22 Hoffmann, F. P., Wolf, G. and Hansen, L. D., Advances in Boron chemistry, R. Soc. Chem. Cambridge, 514 (1997).Google Scholar
23 Sepehri, S., Feaver, A. M., Shaw, W. J., Howard, C. J., Zhang, Q., Autrey, T., Cao, G. Z., J. Phys. Chem. B111, 14285 (2007).Google Scholar