Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:16:04.249Z Has data issue: false hasContentIssue false

Effect of Stirring Speed in Hot Mixing Process of Modified Asphalt with SBS Copolymer on Polymeric Distribution and its Rheological Properties

Published online by Cambridge University Press:  04 March 2016

Esteban Alberto González García
Affiliation:
Facultad de Química, UNAM, Av. Universidad #3000, Ciudad México, Distrito Federal, 04510, México.
Rafael Herrera Nájera
Affiliation:
Facultad de Química, UNAM, Av. Universidad #3000, Ciudad México, Distrito Federal, 04510, México.
Get access

Abstract

The current work reports the effect of particle size on the rheological behavior of polymer modified asphalt PMA. The modified asphalt was generated with AC-20 asphalt precursor provided by Pemex Salamanca and Solprene® 416 provided by Dynasol Mexico. Solprene® 416 is a SBS star-type copolymer with 4 poly(b-styrene-b-butadiene) arms and Mw = 2.36X105 g/gmole. Modified asphalt samples were prepared with 3 wt % of SBS via hot mix process. Mixing time and temperature were kept constant at 4h and 180 °C. This study also varied the agitation in the mixing process: 500, 1000 and 1500 rpm. All PMAs shown sphere-shaped polymer particles as observed via fluorescent microscopy using a Carl Zeiss KS-300 system. Base asphalt and PMAs were also characterized through rheological measurements using a TA Instruments AR-G2 rheometer. Shear viscosity (η) and tan δ data shown that the flow resistance of the PMA increases as the size its polymer particles decreases. Since the size of the polymer particles decreases with the increase of the stirring speed, it is concluded that the stirring speed of the process determines the size of the polymer particles and so the mechanical resistance of the PMA.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cao, Weidong, construction and building materials, 21, 5 (2007).CrossRefGoogle Scholar
You, Zhanping, Mills-Beale, Julian, Foley, Justin M., Roy, Samit, Odegard, Gregory M., Dai, Qingli, Goh, Shu Wei, Construction and building materials, 25, 2 (2011).CrossRefGoogle Scholar
Isacsson, U. and LU, X., Mat. Struc. 28, 139 (1995).CrossRefGoogle Scholar
primo, Di, Horsfield, B., Vega, Guzmán, Nature, 406 (2000).Google Scholar
Lian, H., Lin, JR, Yen, TF, Fuel, 73, 423 (1994).CrossRefGoogle Scholar
Hsieh, H. L.; Quirk, R. P. Anionic Polymerization, Principles and Practical Applications; Marcel Dekker: New York (1996).CrossRefGoogle Scholar
Airey, G. D. J Mater Sci, 39, 951 (2004).CrossRefGoogle Scholar
Wloczysiak, P.; Vidal, A.; Papirer, E.; Gauvin, P. J Appl Polym Sci, 65, 1595 (1997).3.0.CO;2-V>CrossRefGoogle Scholar
Polacco, G.; Stastna, J.; Vlachovicova, Z.; Biondi, D.; Zanzotto, L. Polym Eng Sci, 44, 2185 (2004).CrossRefGoogle Scholar
Polacco, G.; Biondi, D.; Stastna, J.; Vlachovicova, Z.; Zanzotto, L. Macromol Symp, 218, 333 (2004).Google Scholar
Champion, L.; Gerard, J. F.; Planche, J. P.; Martin, D.; Anderson, D. J Mater, 36, 451 (2001).CrossRefGoogle Scholar
Vonk, W. C. and Bull, A. L., in Proceedings of the VII International Roofing Congress Munich, Germany, 1989.Google Scholar
Adedeji, A., Grü Nfelder, T., Bates, F. S., and Macosko, C. W., Polymer Engineering and Science, 36, 12(1996).CrossRefGoogle Scholar
Abigail Martínez-Estrada, A. Chávez-Castellanos, Enrique, Herrera-Alonso, Margarita, Herrera-Nájera, Rafael, Journal of Applied Polymer Science, 115, 6 (2010).Google Scholar
Aklonis, J.J., Macknight, W. J.. Introduction to polymer viscoelasticity. Third edition. (Wiley-interscience. New Jersey.2005) p. 114.Google Scholar
Denn, Morton M., AlChe Journal, 50 (2004).CrossRefGoogle Scholar