Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-29T23:59:15.344Z Has data issue: false hasContentIssue false

The Effect of Strain on Intra- and Interlayer Mass Transport in Metal Epitaxy

Published online by Cambridge University Press:  21 February 2011

H. Brune
Affiliation:
Institut de Physique Expérimental, EPFL, CH-1015 Lausanne, Switzerland
K. Bromann
Affiliation:
Institut de Physique Expérimental, EPFL, CH-1015 Lausanne, Switzerland
K. Kern
Affiliation:
Institut de Physique Expérimental, EPFL, CH-1015 Lausanne, Switzerland
Get access

Abstract

A general concept is shown how to measure both the barriers for terrace and step-down diffusion for an epitaxial system. It is based on the application of mean-field nucleation theory to variable temperature STM data. With this approach we studied the influence of strain on intra- and interlayer diffusion for Ag self diffusion on strained and unstrained Ag(111) surfaces. The strained surface was the first Ag layer that grows pseudomorphically on Pt(111) and is thus under 4.2% compressive strain. The barrier for terrace diffusion is observed to be substantially lower on the strained, compared to the unstrained Ag/Ag(111) case, 60±10 meV and 97±10 meV, respectively. The additional barrier for interlayer diffusion decreases from 120±15 meV for Ag(111) homoepitaxy to only 30±5 meV for diffusion from the strained Ag layer down to the Pt(111) substrate. These examples illustrate the considerable effect of strain on the intra- and interlayer mass transport. They require a new concept of layer dependent nucleation kinetics for heteroepitaxial systems in general.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bauer, E., Z. Kristallogr. 110, 372 (1958).Google Scholar
2 Ehrlich, G. and Hudda, F. G., J. Chem. Phys. 44, 1039 (1966).Google Scholar
3 Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
4 Ghaisas, S. V., Surf. Sci. 223, 441 (1989).Google Scholar
5 Roland, C. and Gilmer, G. H., Phys. Rev. B 46, 13428 (1992).Google Scholar
6 Spjut, H. and Faux, D. A., Surf. Sci. 306, 233 (1994).Google Scholar
7 Venables, J. A., Philos. Mag. 17, 697 (1973).Google Scholar
8 Venables, J. A., Spiller, G. D. T. and Hanbücken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
9 Brune, H., Röder, H., Boragno, C. and Kern, K., Phys. Rev. Lett. 73, 1955 (1994).Google Scholar
10 Stroscio, J. A. and Pierce, D. T., Phys. Rev. B 49, 8522 (1994).Google Scholar
11 Tersoff, J., Gon, A. W. D. v. d. and Tromp, R. M., Phys. Rev. Lett. 72, 266 (1994).Google Scholar
12 Bromann, K., Brune, H., Röder, H. and Kern, K., Phys. Rev. Lett. 75, 677 (1995).Google Scholar
13 Brune, H., Röder, H., Romainczyk, C., Boragno, C. and Kern, K., Appl. Phys. A 60, 167 (1995).Google Scholar
14 Brune, H., Röder, H., Boragno, C. and Kern, K., Phys. Rev. B 49, 2997 (1994).Google Scholar
15 Romainczyk, C., Krzyzowski, M., Zeppenfeld, P., Comsa, G. and Kern, K., to be published (1995).Google Scholar
16 Jacobsen, J., Jacobsen, K. W., Stoltze, P. and Nørskov, J. K., Phys. Rev. Lett. 74, 2295 (1995).Google Scholar
17 The error for Em is predominantly due to scatter of the data. That for v 0 comes from the uncertainty of η(Θ) in eq. (2.15) of ref. 8, (we assumed η(Θsaturation) = 0.20 ± 0.04 see fig. 6c for i = 1 in that reference) and from the error in slope, i.e. in Em.Google Scholar
18 Brune, H., Bromann, K., Röder, H., Kern, K., Jacobsen, J., Stolze, P., Jacobsen, K. and Nørskov, J., Phys. Rev. B in press (1995).Google Scholar
19 Meyer, J. A., Schmid, P. and Behm, R. J., Phys. Rev. Lett. 74, 3864 (1995).Google Scholar
20 Röder, H., Hahn, E., Brune, H., Bucher, J. P. and Kern, K., Nature 366, 141 (1993).Google Scholar
21 Vegt, H. A. v. d., Pinxteren, H. M. v., Lohmeier, M., Vlieg, E. and Thornton, J. M., Phys. Rev. Lett. 68, 3335 (1992).Google Scholar
22 Wang, S. C. and Ehrlich, G., Phys. Rev. Lett. 75, 2964 (1995).Google Scholar
23 Härtel, T., Strüber, U. and Küppers, J., Thin Sol. Films 229, 163 (1993).Google Scholar