No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
The present paper outlines the energetic and kinetic effect by substitutional N, or by coadsorbed NHx (x =1, 2), on one of the key growth steps in the CVD growth mechanism of diamond (100); H abstraction by gaseous H radical species from the (100) surface plane. Theoretical calculations were performed based on Density Functional Theory under periodic boundary conditions. Substitutionally positioned N was shown to have a large effect on the H abstraction process. The H abstraction energy from the diamond surface was greatly improved with N positioned in C layer 2. In order to outline the effect by N on the growth rate, the barriers of energies were calculated. The barrier of abstraction was shown to substantially decrease with N substitutionally positioned in the second C layer, leading to an improvement of the abstraction reaction rate by approximately a factor of 3.