Published online by Cambridge University Press: 15 February 2011
Several groups have irradiated single crystals of synthetic and natural zircon (ZrSiO4) with a wide range of ions (from He to Bi) over a wide range of temperatures. The results of these studies show that amorphization in zircon is controlled by a variety of parameters and is a more complex process than previously thought. The critical dose for amorphization increases with temperature, similar to other materials. However, the critical displacement dose (in dpa) for amorphization is significantly higher at lower temperatures (below 500 K) for very heavy ions, such as Pb and Bi. This unusual dependence on the damage energy density has not been observed previously in other materials. Possible explanations for this behavior in terms of amorphization mechanisms are discussed. In addition, there is a significant difference in the temperature dependence of the critical dose in synthetic and natural zircons, which suggests that the impurities in natural zircons may affect the kinetics of recovery processes.