Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:00:44.254Z Has data issue: false hasContentIssue false

Effect of Temperature and Temperature Uniformity on Plasma and Device Stability

Published online by Cambridge University Press:  01 February 2011

G. Ganguly
Affiliation:
BP Solar, Toano, Virginia
M.S. Bennett
Affiliation:
BP Solar, Toano, Virginia
D.E. Carlson
Affiliation:
BP Solar, Toano, Virginia
R.R. Arya
Affiliation:
BP Solar, Toano, Virginia
Get access

Abstract

We have investigated the changes in the cathode potential in a dc discharge of silane and hydrogen used to deposit the intrinsic layer of p-i-n type solar cells at deposition rates from 1 to 10Å/s with the superstrate temperature at 200°C and 250°C. Under plasma conditions that lead to higher deposition rates (5-10Å/s), fluctuations of the cathode potential which are suggestive of the formation and de-trapping of particulates in/from the plasma, are observed at 200°C but disappear at 250°C. Improvement of the temperature uniformity over the plasma region from 1.7°C/cm to 0.7°C/cm removes the fluctuations of the cathode potential even at 200°C, indicating that the particulates are formed predominantly at the plasma boundary. Consequently, the stability of solar cells with i-layers deposited at ~10Å/s in the center of the plasma region at the same superstrate temperature improved by 26% suggesting that multiple silicon containing molecules diffuse from the edge to the center of the plasma region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carlson, D.E., Ganguly, G., Lin, G., Gleaton, M., Bennett, M., and Arya, R.R., Mater. Res. Soc. Symp. Proc. 664 (2001) A11.4 Google Scholar
2. Ganguly, G., and Matsuda, A., Phys. Rev. B49 (1994) 10986 Google Scholar
3. Okamoto, S., Takahama, T., Nishikuni, M., and Nakano, S., US Patent 5114498 (1992)Google Scholar
4. Hayashi, R., Takagi, T., Ganguly, G., Fukawa, M., Kondo, M. and Matsuda, A., Proc. 2nd. World Conference on PVSEC (European Commission, Ispra, Italy, 1998) p-929.Google Scholar
5. Matsuda, A., Yokohama, S., and Tanaka, K., Appl. Phys. Lett. 53 (1988) 1489 Google Scholar
6. Ganguly, G., and Matsuda, A., Appl. Phys. Lett. 64 (1994) 3581 Google Scholar
7. Takai, M., Nishimoto, T., Kondo, M., and Matsuda, A., Appl. Phys. Lett. 77 (2000) 2828 Google Scholar
8. Takagi, T., Hayashi, R., Ganguly, G., Kondo, M., and Matsuda, A., Thin Solid Films 345 (1999) 75 Google Scholar
9. Koga, K., Matsuoka, Y., Tanaka, K., Shiratani, M., and Watanabe, Y., Appl. Phys. Lett. 77 (2000) 196 Google Scholar
10. Bouchoule, A., Plain, A., Boulefendi, L., Blondeau, J. Ph., and Laure, C., J. Appl. Phys. 70 (1991) 1991 Google Scholar
11. Ganguly, G., Newton, J., Carlson, D.E. and Arya, R.R., J. Non-Cryst. Solids 299-302 (2002) 53; G. Ganguly, G. Wood, J.N. Newton, M. Bennett, D.E. Carlson and R.R. Arya Mater. Res. Soc. Symp. Proc. 715 (2002) 55.Google Scholar
12. Friedman, A. A., Boulefendi, L., Hbid, T., Potapkin, B.V., and Bouchoule, A., J. Appl. Phys, 79 (1996) 1303 Google Scholar