Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T06:08:20.474Z Has data issue: false hasContentIssue false

Effect of Tensile Strain on Thermal Properties of Graphene

Published online by Cambridge University Press:  13 February 2014

Ayman Salman Alofi
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
Gyaneshwar P. Srivastava
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
Get access

Abstract

We have employed a semicontinuum model to investigate the effect of tensile strain on thermal properties of graphene. Analytical expressions derived by Nihira and Iwata for phonon dispersion relations and vibrational density of states are employed, based on the semicontinuum model proposed by Komatsu and Nagamiya. The thermal conductivity is computed within the framework of Callaway’s effective relaxation time theory. It is found that thermal properties of graphene are quite sensitive to tensile strain. In the presence of tensile strain, the specific heat increases but the thermal conductivity decreases.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Zhang, Y. B., Tan, Y. W., Stormer, H. L., and Kim, P., Nature 483, 201 (2005).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., Nature (London) 438, 197 (2005).CrossRefGoogle Scholar
Geim, A. K. and Novoselov, K. S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff, R. S., Nature 442, 282 (2006).CrossRefGoogle Scholar
Nika, D. L., Pokatilov, E. P., Askerov, A. S., and Balandin, A. A., Phys. Rev. B 79, 155413 (2009).CrossRefGoogle Scholar
Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R. S., and Shi, L., Science 328, 213 (2010).CrossRefGoogle Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., and Lau, C. N., Appl. Phys. Lett. 92, 151911 (2008).CrossRefGoogle Scholar
Slack, G. A., Phys. Rev. 127, 694 (1962).CrossRefGoogle Scholar
Onn, D. G., Witek, A., Qiu, Y. Z., Anthony, T. R., and Banholzer, W. F., Phys. Rev. Lett. 68, 2806 (1992).CrossRefGoogle Scholar
Li, X., Maute, K., Dunn, M. L., and Yang, R., Phys. Rev. B 81, 245318 2010.CrossRefGoogle Scholar
Mohiuddin, T. M. G., Lombardo, A., Nair, R. R., Savini, G., Jalil, R., Bonini, N., Basko, D. M., Galiotis, C., Marzari, N., Novoselov, K. S., Geim, A. K., and Ferrari, A. C., Phys. Rev. B 79, 205433 (2009).CrossRefGoogle Scholar
Callaway, J., Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
Nihira, T. and Iwata, T., Phys. Rev. B 68, 134305 (2003).CrossRefGoogle Scholar
Komatsu, K. and Nagamiya, T., J. Phys. Soc. Japan 6, 438 (1951).CrossRefGoogle Scholar
Srivastava, G. P., The Physics of Phonons (Adam and Hilger, Bristol, 1990).Google Scholar
Alofi, A. and Srivastava, G. P., J. Appl. Phys. 112, 013517 (2012).CrossRefGoogle Scholar
Alofi, A. and Srivastava, G. P., Phys. Rev. B 87, 115421 (2013).CrossRefGoogle Scholar
Klemens, P. G. and Pedraza, D. F., Carbon, 32, 735 (1994).CrossRefGoogle Scholar
Slack, G. A. and Galginaitis, S., Phys. Rev. 133, 253 (1964).CrossRefGoogle Scholar
Wang, Y., Panzik, J. E., Kiefer, B., and Lee, K. K. M., Sci. Rep. 2, 520 (2012).CrossRefGoogle Scholar
Gauster, W. B. and Fritz, I. J., J. Appl. Phys. 45, 3309 (1974).CrossRefGoogle Scholar
de Andres, P. L., Guinea, F., and Katsnelson, M. I., Phys. Rev. B 86, 144103 (2012).CrossRefGoogle Scholar
Zakharchenko, K. V., Katsnelson, M. I., and Fasolino, A., Phys. Rev. Lett. 102, 046808 Google Scholar
Zabel, H., J. Phys.: Condens. Matter 13, 7679 (2001).Google Scholar
Ma, F., Zheng, H. B., Sun, Y. J., Yang, D., Xu, K. W., and Chu, P. K., Appl. Phys. Lett. 101, 111904 (2012).CrossRefGoogle Scholar