No CrossRef data available.
Article contents
Effect of the Heat Input in the Mechanical and Metallurgical Properties of Welds on AHSS Transformed Induced Plasticity Steel Joined with GMAW Processes in the Automotive Industry
Published online by Cambridge University Press: 24 February 2014
Abstract
The effect of the heat input on the mechanical and metallurgical properties of the welds has been investigated in the heat affected zone (HAZ) of welds joined with gas metal arc welding (GMAW), using normal production welding parameters. The thermal effect in the HAZ of the welds is important for the optimization of the welding parameters used when weld transformed induced plasticity (TRIP) steels, because this will have a great influence in the mechanical and metallurgical properties of the weld. In this work 3 samples was welded a high, average and low heat input, with the variation of welding parameters to obtain different thermal affectation to investigate the variations in different parts of weld joint: weld, HAZ and base metal, due the heat applied for the welding process used. Mechanical properties were evaluated by tension test, microhardness and fatigue testing and metallurgical evaluation with optical metallograpy, scanning electron microscopy (SEM), fractograpy and X-Ray diffraction (XRD).The results obtained shows that the mechanical properties of the tension test decrease when the heat input increase and the microhardness exhibit a softening zone in the HAZ with lower hardness and the fatigue life were similar for all heat inputs for the high stress levels, but only in low stress there is a difference. For metallurgical properties the metallographic evaluation shows ferrite, bainite - martensite and retained austenite, and the fractography analysis exhibit a ductile fracture in all cases and the content in volume fraction of retained austenite increases in the HAZ of welds when increasing heat input in to the base metal due the thermal effect.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2014