Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T08:57:41.715Z Has data issue: false hasContentIssue false

Effect of Thin Film Confinement on the Transport Properties of Ultra-Thin Polymer Films

Published online by Cambridge University Press:  01 February 2011

Lovejeet Singh
Affiliation:
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332–0100
Peter J. Ludovice
Affiliation:
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332–0100
Clifford L. Henderson*
Affiliation:
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332–0100
*
* E-mail: cliff.henderson@chbe.gatech.edu, Phone: (404)-385–0525
Get access

Abstract

The influence of film thickness and polymer molecular weight on the diffusion coefficient of a series of small molecule penetrants (including water, benzene, and trifluoroacetic acid) in thin films of two different model photoresist polymers (poly(p-hydroxystyrene) and bis-triflouromethyl carbinol substituted poly(norbornene)) has been studied using vapor sorption experiments via quartz crystal microbalance (QCM) methods. Diffusion coefficients for films ranging in thickness from approximately 1 μm to 50 nm were determined. It is observed that the diffusion coefficient of small molecules in a thin polymer film is a strong function of film thickness, and that the diffusion coefficient decreases drastically as film thickness is reduced below a critical thickness value. This critical thickness value is found to be a function of both the type of polymer used and the polymer molecular weight.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, V., Hutchinson, J., Holl, S., Langtom, J., Henderson, C., Wheeler, D.R., Cardinale, G., O’Connell, D., Goldsmith, J., Bohland, J., Taylor, G., Sinta, R., J. Vac. Sci. Technol. B 16, 3722 (1988).Google Scholar
2. Solak, H.H., He, D., Li, W., Cerrina, F., J Vac Sci Technol B 17, 3052 (1999).Google Scholar
3. Palik, E., Handbook of optical constants of solids II. (San Diego: Academic Press, 1998) p. 1059–77.Google Scholar
4. Forrest, J.A., Jones, R.A.L., Polymer Surfaces, Interfaces and Thin Films, Karim, A., Kumar, S., editors (World Scientific, Singapore, 2000).Google Scholar
5. Goldfarb, D. L., Angelopoulos, M., Lin, E. K., Jones, R. L., Soles, C. L., Lenhart, J. L., Wu, W., J. Vac. Sci. Technol. B 19, 2699 (2001).Google Scholar
6. Hubbell, W., Brandt, H., Munir, Z., J. Polym. Sci., Part B: Polym. Phys. 13, 493 (1975).Google Scholar
7. Sacher, E., Susko, J., J. Appl. Polym. Sci. 26, 679 (1981).Google Scholar
8. Numata, S., Fujisaki, K., Kinjo, N., Polymer 28, 2282 (1987).Google Scholar
9. Sykes, G., Clair, A., J. Appl. Polym. Sci. 32, 3725 (1986).Google Scholar
10. Yang, D., Koros, W.J., Hopfenberg, H., Stannett, V., J. Appl. Polym. Sci. 30, 1035 (1985).Google Scholar
11. Yang, D., Koros, W. J., Hopfenberg, H., Stannet, V., J. Appl. Polym. Sci. 31, 1619 (1986).Google Scholar
12. Okamoto, K., Tanihara, N., Watanabe, H., Tanaka, K., Kita, H., Nakamura, A., Kusuki, Y., Nakagawa, K., J. Polym. Sci., Part B: Polym. Phys. 30, 12231231 (1992).Google Scholar
13. Ichikawa, K., Mori, T., Kitano, H., Fukuda, M., Mochizuki, A., Tanaka, M., J. Polym. Sci., Part B: Polym. Phys. 39, 21752182 (2001).Google Scholar
14. Ree, M., Swanson, S., Volksen, W., Polymer 34, 1423 (1993).Google Scholar
15. Jou, J., Huang, R., Huang, P., Shen, W., J. Appl. Polym. Sci. 43, 857875 (1991).Google Scholar
16. Jou, J., Huang, P., Polymer 33, 12181222 (1992).Google Scholar
17. Berger, C.M., Henderson, C.L., Polymer 44, 21012108 (2003).Google Scholar
18. Lu, C., Czanderna, A., Applications of Piezoelectric Quartz Crystal Microbalances, (New York: Elsevier, 1984, chapter 2).Google Scholar
19. Han, H., Seo, J., Ree, M., Pyo, S., Gryte, C., Polymer 39(13), 29632972 (1998).Google Scholar
20. Despond, S., Espuche, E., Domard, A., J. Polym. Sci., Part B: Polym. Phys. 39, 3114 (2001).Google Scholar
21. Seo, J., Cho, K., Han, H., Polym. Degrad. Stab. 74, 133 (2001).Google Scholar
22. Mueller, K., Koros, W. J., Wang, Y., Willson, C. G., Proc SPIE 3049, 871 (1997).Google Scholar
23. Hines, A.L., Maddox, R.N., Mass Transfer: Fundamentals and Applications, (Englewood Cliffs: Prentice-Hall, 1985, chapter 4)Google Scholar
24. Comyn, J., Polymer Permeability, (New York: Elsevier; 1985) p. 7, 345–350. Google Scholar
25. Vieth, W., Diffusion In and Through Polymers: Principles and Applications, (New York: Hanser; 1991) p. 1947.Google Scholar