Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T22:22:42.187Z Has data issue: false hasContentIssue false

Effect of Ti3Si on Texture in Ti-Nb Based Shape Memory Alloys

Published online by Cambridge University Press:  26 February 2011

Ryutaro Shimizu
Affiliation:
ryutaro@ken.pi.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence Laboratory, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Kei Masumoto
Affiliation:
k-masumoto@ken.pi.titech.ac.jp, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Yusuke Fukui
Affiliation:
fukui@ken.pi.titech.ac.jp, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Tomonari Inamura
Affiliation:
inamura.t.aa@m.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence Laboratory, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Kenji Wakashima
Affiliation:
wakashima.k.aa@m.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence Laboratory, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Hideki Hosoda
Affiliation:
hosoda.h.aa@m.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence Laboratory, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Shuichi Miyazaki
Affiliation:
miyazaki@ims.tsukuba.ac.jp, University of Tsukuba, Institute of Materials Science, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
Get access

Abstract

Effect of Ti3Si particles on recrystallization texture of Ti-Nb based superelastic alloys has been investigated using X-ray pole figure measurement and electron backscatter diffraction (EBSD) technique. The alloys used were Ti-24mol%Nb-3mol%Al-Xmol%Si (X=0~0.9, termed XSi) and Ti-24mol%Nb-3mol%Si alloy (termed 3Si). The apparent phase at room temperature was β-phase (bcc). Besides, (Ti, Nb)3Si particles with PTi3 type crystal structure were formed in the alloys with Si content higher than 0.7mol%. After the cold rolling of 99% reduction in thickness, a rolling texture of the β-phase was formed to be mainly {001}β<110>β regardless of the presence of the (Ti, Nb)3Si particles. After the solution treatment at 1273K, a recrystallization texture formed to be {112}β<110>β in all the alloys except for 3Si. The average grain size of the recrystallized alloys was 20~40μm. On the other hand, the solution treated 3Si exhibited the {001}β<110>βn texture and the average grain size of 3μm. It is concluded that the {001}β<110>β texture with fine grains of the solution treated 3Si is obtained by the suppression of grain boundary migration due to the existence of the (Ti, Nb)3Si particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brooks, C.R., Heat Treatment, Structure and Properties of Nonferrous Alloy, ASM, 1982, p. 329 (Chapter9).Google Scholar
[2] Brown, A.R.G., Clark, D., Eastabrook, J., Jepson, KS., Nature 201 (1964) 914.Google Scholar
[3] Baker, C., Metal Sci. J. 5 (1971) 92.Google Scholar
[4] Duerig, T.W., Ritchter, D.F., Albrecht, J., Scripta Metall. 16 (1982) 957.Google Scholar
[5] Nitta, K., Watanabe, S., Masahashi, N., Hosoda, H., Hanada, S., Proc. Intl. Symp. Structural Biomaterials for the 21st Century, 2001, p25.Google Scholar
[6] Takahashi, E., Sakurai, T., Watanabe, S., Masahashi, N., Hanada, S., Mater. Trans. 43 (2002) 2978.Google Scholar
[7] Maeshima, T., Nishida, M., Mater Trans. 45 (2004) 1096.Google Scholar
[8] Furuhara, T., Annaka, S., Maki, T., J. Mater. Eng. Perform. 14 (2005) 761.Google Scholar
[9] Hosoda, H., Fukui, Y., Inamura, T., Wakashima, K. and Miyazaki, S., Mater. Sci. Forum 475–479 (2005) 2329 Google Scholar
[10] Inamura, T., Fukui, Y., Hosoda, H., Wakashima, K. and Miyazaki, S., Mater. Sci. Eng. C, 25 (2005) 426 Google Scholar
[11] Horiuchi, Y., Inamura, T., Kim, H. Y., Miyazaki, S., Wakashima, K. and Hosoda, H., Mater. Trans. 46 (2005) 1209 Google Scholar
[12] Kim, H. Y., Sasaki, T., Okutsu, K., Kim, J. I., Inamura, T., Hosoda, H., Miyazaki, S., Acta Mater. 54 (2006) 423 Google Scholar
[13] Inamura, T., Fukui, Y., Hosoda, H., Wakashima, K., Miyazaki, S., Mater. Trans. 45 (2004) 1083.Google Scholar
[14] Fukui, Y., Inamura, T., Hosoda, H., Wakashima, K., Miyazaki, S., Mater. Trans. 45 (2004) 1077.Google Scholar
[15] Inamura, T., Fukui, Y., Hosoda, H., Wakashima, K., Miyazaki, S., Mater. Sci. Forum 457–479 (2005) 2323.Google Scholar
[16] Inamura, T., Kinoshita, Y., Kim, J. I., Kim, H. Y., Hosoda, H., Wakashima, K. and Miyazaki, S., Mater. Sci. Eng. A, 438–440 (2006) 865 Google Scholar
[17] Masumoto, K., Horiuchi, Y., Inamura, T., Hosoda, H., Wakashima, K. and Miyazaki, S., Mater. Sci. Eng. A, 438–440 (2006) 835 Google Scholar