No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Tungsten (W)-substituted SBT ceramics [SrBi2(Ta1-xWx)2O9; 0.0 ≤ x ≤ 0.20] were synthesized by solid state reaction method using different sintering temperatures (1100 οC, 1150 οC, 1200 οC and 1250 οC). W substitution is found to significantly affect the electrical properties of SBT, including dielectric permittivity, Curie temperature, and ferroelectricity. Dielectric constant (εr) and the Curie temperature (Tc) increase with increasing W content. The dielectric loss reduces significantly with increase in W concentration. The maximum Tc of ~ 390 οC is observed in the sample with x = 0.20 as compared to ~ 320 οC for the pure sample when sintered at 1200 οC. The peak ε increases from ~ 270 in the sample with x = 0.0 to ~ 700 for the composition with x = 0.20, when sintered at 1200 οC. All the tungsten-substituted ceramics have higher 2Pr than that in the pristine sample. The maximum 2Pr (~25 μC/cm2) is obtained in composition with x = 0.05 sintered at 1200 οC. These effects have been interpreted based on the model of the recovery of oxygen vacancies upon W substitution. Such compositions with low loss and high Pr values should be excellent materials for highly stable ferroelectric memory devices.