No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Sol-gel derived Nb2O5 thin films were intercalated with Mg2+,using the non-aqueous solution of Mg(ClO4)2 in propylene carbonate (pc) as the electrolyte. 2% and 4% ( volume %) water was added to the electrolyte to study the effect of water on the electrochromic properties of Nb2O5. This paper presents the changes in optical and structural properties of the intercalated films with and without water in the electrolyte. The ratio (x) of the Mg2+ and Nb atoms has been controlled by optimizing the intercalation duration under a constant current density. The fall in transmittance on intercalation (for x= 0.8) increased by 15% with 4% water in the electrolyte, compared to the film intercalated without water. FTIR studies show that water is incorporated in the films on intercalation and small quantities of Mg(OH)2 and Nb-OH are formed along with Mg-O-Nb bonds. The presence of water in electrolyte decreases water content in the films and enhances the formation of Mg(OH)2, Mg-O-Nb and Nb-OH bonds. The recovery of Mg2+ on deintercalation is slightly reduced in presence of water in the electrolyte. The cyclic stability of the films intercalated without water is more than that of the films intercalated in presence of water.