Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T13:39:55.125Z Has data issue: false hasContentIssue false

Effective Mg:Ag / MoO3 recombination zone for tandem organic photovoltaic devices

Published online by Cambridge University Press:  04 June 2015

A. R. Jeong
Affiliation:
Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
S. Wiesner
Affiliation:
Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
S. Fengler
Affiliation:
Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
M. Ch. Lux-Steiner
Affiliation:
Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
M. Rusu*
Affiliation:
Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Get access

Abstract

We demonstrate an effective recombination zone consisting of Mg:Ag (1:3) alloy and MoO3 layers with 0.8 nm and 3 nm respectively for application in tandem organic photovoltaic devices based on zinc phthalocyanine (ZnPc) donor and fullerene C60 acceptor. The Mg:Ag layer ensures an optimum electron selectivity, while MoO3 layer effectively selects holes. A conversion efficiency of 2.2% has been achieved under an illumination of 100 mW/cm2 at room temperature. The open circuit voltage of 810 mV is close to the sum of the open circuit voltages of the constituent single cells. The recombination Mg:Ag-MoO3 layer system is investigated with regard to the requirements of high optical transparency, work function compatibility, and facilitation of light absorption. The respective characterizations were carried out by UV-Visible spectroscopy, Kelvin probe force microscopy in ultrahigh vacuum, current-voltage and external quantum efficiency methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Peumans, P., Uchida, S., and Forrest, S. R., Nature (London) 158, 425 (2003).Google Scholar
Peumans, P., Yakimov, A., and Forrest, S. R., J. Appl. Phys. 93, 3693 (2003).CrossRefGoogle Scholar
Heliatek. Available online: http://www.heliatek.com/ Google Scholar
Rusu, M., Wiesner, S., Lauermann, I., Fischer, Ch.-H., Fostiropoulos, K., Audinot, J. N., Fleming, Y., and Lux-Steiner, M. Ch., Appl. Phys. Lett. 97, 073504 (2010).CrossRefGoogle Scholar
Rusu, M., Kraffert, F., Wiesner, S., Schindler, W., Fostiropoulos, K., Ch. Lux-Steiner, M., Energy Procedia 31, 96 (2012).CrossRefGoogle Scholar
Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., and Kahn, A., Adv. Mater. 24, 5408 (2012).CrossRefGoogle Scholar
Pfeiffer, M., Leo, K., and Karl, N., J. Appl. Phys. 80, 6880 (1996).CrossRefGoogle Scholar
Sun, Y., Takacs, C. J., Cowan, S. R., Seo, J. H., Gong, X., Roy, A., and Heeger, A. J., Adv. Mater. 23, 2226 (2011).CrossRefGoogle Scholar
Larsen, J. K., Simchi, H., Xin, P., Kim, K., and Shafarman, W. N., Appl. Phys. Lett. 104, 033901 (2014).CrossRefGoogle Scholar
Rusu, M., Wiesner, S., Nete, T., Blei, H., Meyer, N., Heuken, M., Lux-Steiner, M. C., and Fostiropiulos, K., Renewable Energy 33, 254 (2008).CrossRefGoogle Scholar
Sadewasser, S and Glatzel, T., Kelvin Probe Force Microscopy Measuring and Compensating Electrostatic Forces, (Springer Series in Surface Sciences, Heidelberg (2012)) p.1214.Google Scholar
Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R., and Thompson, M. E., J. Am. Chem. Soc. 128, 8108 (2006).CrossRefGoogle Scholar
Hong, Z. R., Lessmann, R., Maennig, , Huang, Q., Harada, K., Riede, M., and Leo, K., J. Appl. Phys. 106, 064511 (2009).CrossRefGoogle Scholar