Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T08:39:24.029Z Has data issue: false hasContentIssue false

Effective temperature inside living cells

Published online by Cambridge University Press:  31 January 2011

Claire Wilhelm*
Affiliation:
claire.wilhelm@univ-paris-diderot.fr, Laboratoire MSC. UMR 7057 CNRS & Université Paris Diderot, PARIS, United States
Get access

Abstract

The combination of active and passive microrheology using magnetic probes engulfed inside living cells demonstrates the violation of the fluctuation dissipation theorem in cells. It is proposed to quantify the deviation from the in equilibrium situation with an effective temperature. Each magnetic probe then serves as a local thermometer within the cells. The response of pairs of magnetic beads of two diameters (1 and 2.8 μm) to an oscillating magnetic field is analyzed to measure the viscoelastic complex modulus in the beads environment (active measurement). The spontaneous motion of the beads is tracked to compute their mean square displacements (passive measurement). The effective temperature is derived using an extension of the fluctuation dissipation theorem.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cicuta, P. and Donald, A. M. Soft Matter. 3, 1449–55 (2007).Google Scholar
2 Bausch, A. R. Moller, W. and Sackmann, E. Biophys J. 76, 573–9 (1999).Google Scholar
3 Marion, S. Wilhelm, C. Voigt, H. et al., J Cell Sci. 117, 3271–9 (2004).Google Scholar
4 Heidemann, S. R. and Wirtz, D. Trends Cell Biol. 14, 160–6 (2004).Google Scholar
5 Jonas, M. Huang, H. Kamm, R. D. et al., Biophys J. 95, 895909 (2008).Google Scholar
6 Tseng, Y. Kole, T. P. and Wirtz, D. Biophys J. 83, 3162–76 (2002).Google Scholar
7 Rogers, S. S. Waigh, T. A. and Lu, J. R. Biophys J. 94, 3313–22 (2008).Google Scholar
8 Caspi, A. Granek, R. and Elbaum, M. Phys Rev Lett. 85, 5655–8 (2000).Google Scholar
9 Tolic-Norrelykke, I. M., Munteanu, E. L. Thon, G. et al., Phys Rev Lett. 93, 078102 (2004).Google Scholar
10 Mizuno, D. Tardin, C. Schmidt, C. F. et al., Science. 315, 370–3 (2007).Google Scholar
11 Nan, X. Sims, P. A. and Xie, X. S. Chemphyschem. 9, 707–12 (2008).Google Scholar
12 Wilhelm, C. Phys Rev Lett. 101, 028101 (2008).Google Scholar
13 Lau, A. W. Hoffman, B. D. Davies, A. et al., Phys Rev Lett. 91, 198101 (2003).Google Scholar
14 He, Y. Burov, S. Metzler, R. et al., Phys Rev Lett. 101, 058101 (2008).Google Scholar
15 Cugliandolo, L. F. and Kurchan, J. Phys Rev Lett. 71, 173–6 (1993).Google Scholar
16 Loi, D. Mossa, S. and Cugliandolo, L. F. Phys Rev E Stat Nonlin Soft Matter Phys. 77, 051111 (2008).Google Scholar
17 Greinert, N. Wood, T. and Bartlett, P. Phys Rev Lett. 97, 265702 (2006).Google Scholar
18 Wilhelm, C. Browaeys, J. Ponton, A. et al., Phys Rev E Stat Nonlin Soft Matter Phys. 67, 011504 (2003).Google Scholar
19 Marion, S. Guillen, N. Bacri, J. C. et al., Eur Biophys J. 34, 262–72 (2005).Google Scholar
20 Schnurr, B. Gittes, F. MacKintosh, F. C. et al., Macromolecules. 30, 7781–92 (1997).Google Scholar