No CrossRef data available.
Article contents
Effects of argon to oxygen ratio and post annealing on R.F. sputtered SnO2 thin film for ethylene gas detection
Published online by Cambridge University Press: 17 January 2011
Abstract
Optimum processing conditions for fabricating SnO2 thin films were investigated to detect low ppm levels of ethylene gas for future on-field gas sensor applications. Different argon-to-oxygen ratios during R.F. sputtering were attempted to find the optimum gas ratio in depositing SnO2 thin film. Post-annealing was performed at 650°C to investigate the influence of film property change on ethylene sensing property of sensor. As-deposited and post-annealed films prepared under four different argon-to-oxygen ratios were studied by SEM, XRD, and sensitivity measurement. It was found that the stoichiometry and crystallinity of SnO2 films determined by post annealing was more influential than those by the argon to oxygen ratio during R.F sputtering on ethylene gas detection. An ethylene gas-sensing mechanism on R.F. sputtered SnO2 thin films for the design of processing conditions is proposed.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1292: Symposium K – Oxide Nanoelectronics , 2011 , mrsf10-1292-k12-34
- Copyright
- Copyright © Materials Research Society 2011