Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:11:10.683Z Has data issue: false hasContentIssue false

Effects of Excitation Frequency and H2 Dilution on Cluster Generation in Silane High-Frequency Discharges

Published online by Cambridge University Press:  01 February 2011

Masaharu Shiratani
Affiliation:
Department of Electronics, Kyushu University, Fukuoka 812-8581, Japan
Kazunori Koga
Affiliation:
Department of Electronics, Kyushu University, Fukuoka 812-8581, Japan
Atsushi Harikai
Affiliation:
Department of Electronics, Kyushu University, Fukuoka 812-8581, Japan
Takanori Ogata
Affiliation:
Department of Electronics, Kyushu University, Fukuoka 812-8581, Japan
Yukio Watanabe
Affiliation:
Department of Electronics, Kyushu University, Fukuoka 812-8581, Japan
Get access

Abstract

Reduction of cluster amount in silane discharges is the key to decreasing microstructure parameter Rα of a-Si:H films deposited with the discharges. The cluster amount is found to be reduced more than one order of magnitude using 60 MHz discharges instead of 28 MHz ones or using H2 dilution of an H2/SiH4 ratio of 5. The cluster-suppressed plasma CVD using 60 MHz discharges realizes deposition of a-Si:H films of Rα~ 0 at a fairly high rate of 0.55 nm/s. Moreover, a downstream cluster collection method of high sensitivity has been developed for detecting a small amount of clusters formed under deposition conditions of Rα < 0.01.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takai, M., Nishimoto, T., Takagi, T., Kondo, M., and Matsuda, A., J. Non-Cryst. Solids 266, 90 (2000).Google Scholar
2. Miyahara, H., Takai, M., Nishimoto, T., Kondo, M., and Matsuda, A., Solar Energy Materials And Solar Cells 74, 351, (2002).Google Scholar
3. Shiratani, M., Maeda, S., Koga, K., and Watanabe, Y., Jpn. J. Appl. Phys. 39, 287 (2000).Google Scholar
4. Koga, K., Matsuoka, Y., Tanaka, K., Shiratani, M., and Watanabe, Y., Appl. Phys. Lett. 77, 196 (2000).Google Scholar
5. Koga, K., Shisratani, M., and Watanabe, Y., Proc. Nano-technology Workshop, pp. 1320, Dejun, Korea, Feb. 2002.Google Scholar
6. Shiratani, M. and Watanabe, Y., Rev. of Laser Eng. 26, 449 (1998).Google Scholar
7. Shiratani, M., Fukuzawa, T., and Watanabe, Y., Jpn. J. Appl. Phys. 38, 4525 (1999).Google Scholar
8. Watanabe, Y., Shiratani, M., Fukuzawa, T., and Koga, K., J. Tech. Phys., 41, 505 (2000).Google Scholar
9. Shiratani, M., Fukuzawa, T., Eto, K., and Watanabe, Y., Jpn. J. Appl. Phys. 31, L1791 (1992).Google Scholar
10. Watanabe, Y., Shiratani, M., and Koga, K., Plasma Sources & Sci. Tech. 11, A229 (2002).Google Scholar
11. Watanabe, Y., Harikai, A., Koga, K., and Shiratani, M., Pure Appl. Chem. 74, 483 (2002).Google Scholar
12. Koga, K., Kai, M., Shiratani, M., Watanabe, Y., and Shikatani, N., Jpn. J. Appl. Phys. 41, L168 (2002).Google Scholar
13. Shiratani, M., Kai, M., Koga, K., and Watanabe, Y., Thin Solid Films 427, 1 (2003).Google Scholar