Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T10:21:47.705Z Has data issue: false hasContentIssue false

Effects of LSCO Buffer Layer on the Microstructure and Dielectric Properties of Ba0.6Sr0.4TiO3 Films Prepared by Sol-gel Methods

Published online by Cambridge University Press:  31 January 2011

Songwei Han
Affiliation:
Shanghai Univerdity, Material Science, Shanghai, China
Shengwen Yu
Affiliation:
swyu@staff.shu.edu.cn, Shanghai Univerdity, Material Science, Shanghai, China
Jinrong Cheng
Affiliation:
jrcheng@staff.shu.edu.cn
Get access

Abstract

In this work, Ba0.6Sr0.4TiO3(BST) thin films were deposited on Ti substrates using conductive La0.5Sr0.5CoO3 (LCSO) as buffer layers. Both BST and LSCO films were prepared by sol-gel methods. The structure and morphology of BST and LSCO films were analyzed by X-ray diffraction (XRD). XRD results show that both BST and LSCO films have perovskite structure with random orientation. The dielectric properties of BST films were dependent on the thickness of LSCO buffer layers. Upon using LSCO buffer layers, the dielectric properties of BST films were significantly improved. The dielectric constant, tunability, and dielectric loss of BST thin films for LSCO of 150 nm achieved about 453, 0.032 and 31.26% respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chen, C. L., Shen, J., Shen, S. Y., Luo, G. P., Chu, C. W., Miranda, F. A., Keuls, F. W. V., Jiang, J. C., Meletis, E. I., Chang, H. Y., Appl. Phys. Lett., 78, 2001 (652).Google Scholar
[2] Majumder, S. B., Jain, M., Martinez, A., Katiyar, R. S., Keuls, F. W. V., Miranda, F. A., J. of Appl. Phys., 96, 2001 (896).Google Scholar
[3] Vinoy, K. J., Sharma, P. K., Jose, K. A., Varadan, V. K., Varadan, V. V., Proc SPIE., 4334, 2001 (156).Google Scholar
[4] Laughlin, B., Ihlefeld, J., Maria, J. P., J. Am. Ceram. Soc., 88, 2005 (2652).Google Scholar
[5] Fan, W., Saha, S., Carlisle, J. A., et al, Appl. Phys. Lett., 82, 2003 (1452).Google Scholar
[6] Choi, W., Kang, B. S., X, Q., et al, Jia, Appl. Phys. Lett., 88, 2006 (062907–1)Google Scholar
[7] Qin, W. F., Xiong, J., Zhu, J., Tang, J. L., Jie, W. J., We, X. H., Zhang, Y., Li, Y. R., J. Mater. Sci.: Mater. Electron, 19, 2008 (429).Google Scholar
[8] Lu, S.B., Xu, Z. K., J. Appl. Phys., 106, 2009 (064107).Google Scholar
[9] Che, L.J., Cheng, J.R., Yu, S. W., Meng, Z. Y., Mater. Lett., 61, 2007 (3068).Google Scholar
[10] Ghonge, S.G., et al, Appl. Phys. Lett., 63, 1993 (1628).Google Scholar
[11] Wang, G.S., et al J. Cryst. Growth, 233, 2001 (512).Google Scholar
[12] Zhang, B. H., Wan, N., Zhang, T. J., J. Hubei University (Natural Science), 28, 2006 (42).Google Scholar