Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:14:43.583Z Has data issue: false hasContentIssue false

Effects of Oxygen-doping on Crystallization and Physical Properties of Ge2Sb2Te5 Films

Published online by Cambridge University Press:  01 February 2011

Yu-Hsung Perng
Affiliation:
d943586@oz.nthu.edu.tw, Nartional Tsing Hua University, Hsinchu, 30013, Taiwan
Ying-Tai Hsu
Affiliation:
atai_hsu@cmlt.com.tw, Nartional Tsing Hua University, Hsinchu, 30013, Taiwan
Lih-Hsin Chou
Affiliation:
lhchou@mx.nthu.edu.tw, Nartional Tsing Hua University, Hsinchu, 30013, Taiwan
Get access

Abstract

Oxygen-doped Ge2Sb2Te5 films (denoted as Ge2Sb2Te5-O) with oxygen concentration in between 0 and 10.3 at. % were prepared by direct current magnetron reactive sputtering with Ge2Sb2Te5 target. Both the crystallization temperature and activation energy of Ge2Sb2Te5-O films increased, while the crystalline grain size refined with oxygen concentration. For both amorphous and crystalline phases, optical band gap Egopt increases with oxygen concentration – a similar trend as observed in resistivity measurements. X-ray diffraction results showed that the face center cubic (fcc) structure maintained even after 400°C anneal with oxygen addition in between 7.5 − 8.3 at.% - a different phenomenon from undoped Ge2Sb2Te5 film, but with crystallinity diminished gradually with oxygen concentration. Only Sb2Te3 diffraction peak was observed in the 10.3 at.% O film after 400°C anneal. In conjunction with the bonding information obtained from X-ray photoelectron spectroscopy (XPS), effects of oxygen on the microstructures, thermal properties, resistivity and stability of fcc structure are examined and the embedded mechanisms are discussed in this study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ovshinsky, S. R. Phys. Rev. Lett. 21, 1450 (1968).Google Scholar
2. Matsuzaki, N. Kurotsuchi, K. Matsui, Y. Tonomura, O. Yamamoto, N. Fujisaki, Y. Kitai, N. Takemura, R. Osada, K. Hanzawa, S. Moriya, H. Iwasaki, T. Kawahara, T. Takaura, N. Terao, M., Matsuoka, M. and Moniwa, M. IEDM Sec 31-1 (2005).Google Scholar
3. Ebina, A. Hirasaka, M. and Nakatani, K. J. Vac. Sci. Technol. A17 (6), 3463 (1999).Google Scholar
4. Takase, A. Fujinawa, G. Ebina, A. Hirasaka, M. and Sugiyama, I. Jpn. J. Appl. Phys. 41, 2189 (2002).Google Scholar
5. Privitera, S. Rimini, E. Bongiorno, C. Pirovano, A. and Bez, R. Nucl. Instrum. Methods Phys. Res. B257, 352 (2007).Google Scholar
6. Liu, B. Song, Z. Zhang, T. Feng, S. and Chen, B. Appl. Surf. Sci. 242, 62 (2005).Google Scholar
7. Kissinger, H. E. Anal. Chem. 29, 1702 (1957).Google Scholar
8. Jeong, T.H., Seo, H. Lee, K. L. Choi, S. M. Kim, S. J. and Kim, S. Y. Jpn. J. Appl. Phys. 40, 1609 (2001).Google Scholar
9. Dimitrov, D. Shieh, H.-P.D., Materials Science and Engineering B107, 107 (2004).Google Scholar
10. Privitera, S. and Rimini, E. Appl. Phys. Lett. 85 (15), 3044 (2004).Google Scholar
11. Hammond, C. The Basics of Crystallography and Diffraction, 2nd ed. (Oxford University Press, New York, 2001) p. 111 and p.181.Google Scholar
12.http://www.capital.net/com/vcl/periodic/periodic.htmGoogle Scholar
13. Moulder, J. F. Stickle, W. F. Handbook of X-ray Photoelectron Spectroscope, (1995) p.223.Google Scholar
14. Wazer, J. R. Van, Morgan, W. E. and Stec, W. J. Inorganic Chemistry, 12 (4), 953 (1973).Google Scholar