Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:02:41.900Z Has data issue: false hasContentIssue false

The Effects of Processing on the Morphology of Nanoparticles

Published online by Cambridge University Press:  21 March 2011

Christopher R. Perrey
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
Julia M. Deneen
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
C. Barry Carter*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
*
corresponding author: cbcarter@umn.edu
Get access

Abstract

One of the major challenges confronting the utilization of nanoparticles in industrial and social applications is that of producing the nanoscale materials. Of the methods of manufacturing nanoscale materials, processes involving plasmas have been shown to be cost-effective and versatile in the production of chemically diverse material. Using transmission electron microscopy, individual nanoparticles produced by a thermal plasma-based production method have been examined. The observations of these studies imply that the thermal history of the nanoparticles during formation is of great importance in the determination of the resulting nanoparticle morphology. Such results have the potential to enable the manufacturing of nanoparticles of a specific size and shape from plasmas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Perrey, C.R. et al. , Mat. Res. Soc. Symp. Proc., 2002. 740: p. I3.13.1–I3.13.6.Google Scholar
2. Gerberich, W.W. and Mook, W.M., Pour la Science, 2003. 41(Oct.-Dec.): p. 19.Google Scholar
3. Gerberich, W.W. et al. , J. Mech. Phys. Solids, 2003. 51: p. 979992.Google Scholar
4. Roco, M.C., J. Nanoparticle Res., 2001. 3: p. 511.Google Scholar
5. Durham, J.A., , J.L.P. Jr., and Steinbruchel, C., Microcontamination, 1990. 8(11): p. 3769.Google Scholar
6. Selwyn, G.S., Vide, les Couches Minces, 1991. 47(256): p. 129.Google Scholar
7. Bingham, R. and Tsytovich, V.N., IEEE T. Plasma Sci., 2001. 29(2): p. 158163.Google Scholar
8. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy. 1996, New York: Plenum Press.Google Scholar
9. Neuman, A. et al. , IEEE T. Plasma Sci., 1999. 27(1): p. 4647.Google Scholar
10. Rao, N.P. et al. , Plasma Chem. Plasma P., 1995. 15(4): p. 581607.Google Scholar
11. Rao, N.P. et al. , Nanostruct. Mater., 1997. 9: p. 129132.Google Scholar
12. Rao, N.P. et al. , J. Mater. Res., 1995. 10: p. 20732084.Google Scholar
13. Rao, N.P. et al. , J. Aerosol Sci., 1998. 29(5/6): p. 707.Google Scholar
14. Liu, P. et al. , Aerosol Sci. Tech., 1995. 22(3): p. 314324.Google Scholar
15. Liu, P. et al. , Aerosol Sci. Tech., 1995. 22(3): p. 293313.Google Scholar
16. Di Fonzo, F. et al. , Appl. Phys. Lett., 2000. 77: p. 910912.Google Scholar
17. Jia, C.L., Lentzen, M., and Urban, K., Science, 2003. 299: p. 870873.Google Scholar
18. Haider, M. et al. , Ultramicroscopy, 1998. 75: p. 5360.Google Scholar
19. Haider, M. et al. , Nature, 1998. 392: p. 768769.Google Scholar
20. Lentzen, M. et al. , Ultramicroscopy, 2002. 92: p. 233242.Google Scholar
21. Perrey, C.R. et al. , Microsc. Microanal., 2003. 9(Suppl. 2): p. 412413.Google Scholar
22. Perrey, C.R., Deneen, J.M., and Carter, C.B., in preparation.Google Scholar
23. Li, D. and Herlach, D.M., Europhys. Lett., 1996. 34(6): p. 423428.Google Scholar
24. Li, D., Eckler, K., and Herlach, D.M., Acta Mater., 1996. 44(6): p. 24372443.Google Scholar
25. Lau, C.F. and Kui, H.W. J. Appl. Phys., 1990. 67(6): p. 31613184.Google Scholar
26. Lau, C.F. and Kui, H.W., Acta Metall. Mater., 1991. 39(3): p. 323327.Google Scholar
27. Lau, C.F. and Kui, H.W., Acta Metall. Mater., 1993. 41(7): p. 19992005.Google Scholar
28. Aoyama, T. and Juribayashi, K., Acta Mater., 2000. 48: p. 37393744.Google Scholar
29. Aoyama, T. and Kuribayashi, K., Mat. Sci. Eng., 2001. A304–306: p. 231234.Google Scholar
30. Aoyama, T., Takamura, Y., and Kuribayashi, K., Metall. Trans. A, 1999. 30A: p. 13331339.Google Scholar
31. Levi, C.G. and Mehrabian, R., Metall. Trans. A, 1982. 13A: p. 221234.Google Scholar
32. Levi, C.G. and Mehrabian, R., Metall. Trans. A, 1982. 13A: p. 1323.Google Scholar
33. Walker, J.L., The Influence of Large Amounts of Undercooling on the Grain Size of Nickel, in Physical Chemistry of Process Metallurgy Part 2, Pierre, G.R. St., Editor. 1961, Interscience Publishers: New York. p. 845853.Google Scholar
34. Devaud, G. and Turnbull, D., Acta Metall., 1987. 35(3): p. 765769.Google Scholar
35. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics. 1976, New York: John Wiley & Sons.Google Scholar