Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:16:44.641Z Has data issue: false hasContentIssue false

Effects of Substrate Misorientation Direction on Strain Relaxation at InGaAs/GaAs(001) Interfaces

Published online by Cambridge University Press:  15 February 2011

R.S. Goldman
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
H.H. Wieder
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
K.L. Kavanagh
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
Get access

Abstract

We have investigated the effects of substrate misorientation direction on strain relaxation at InGaAs/GaAs(001) interfaces. Calculations of the shear stresses due to the misfit strain, resolved on the glide plane in the glide direction, suggest that the dislocation glide force and the activation energy for dislocation nucleation are essentially identical for the α and β slip systems. However, experimental results indicate that asymmetries in strain relaxation are sensitive to A-type misorientation and/or step-edge densities. Thus, a dislocation nucleation source or glide velocities sensitive to step densities or local roughness may explain these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yonenaga, I., and Sumino, K., J. Cryst. Growth 126, 19 (1993).Google Scholar
2. Kavanagh, K. L., Capano, M. A., Hobbs, L. W., Barbour, J. C., Maree, P. M. J., Schaff, W., Mayer, J. W., Pettit, D., Woodall, J. M., Stroscio, J. A., and Feenstra, R. M., J. Appl. Phys. 64, 4843 (1988).Google Scholar
3. Goldman, R. S., Wieder, H. H., Kavanagh, K. L., Rammohan, K., and Rich, D. H., Appl. Phys. Lett. 65, 1424 (1994).Google Scholar
4. Maigne, P., and Roth, A. P., Appl. Phys. Lett. 62, 873 (1993).Google Scholar
5. Werner, P., Zakharov, N. D., Chen, Y., Liliental-Weber, Z., Washburn, J., Klem, J. F., and Tsao, J. Y., Appl. Phys. Lett. 62, 2798 (1993).Google Scholar
6. Ayers, J. E., and Ghandhi, S. K., J. Cryst. Growth 113, 430 (1991).Google Scholar
7. Kamat, S. V., and Hirth, J. P., J. Appl. Phys. 67, 6844 (1990).Google Scholar
8. Hirth, J. P., and Evans, A. G., J. Appl. Phys. 60, 2372 (1986).Google Scholar
9. Mooney, P. M., LeGoues, F. K., Tersoff, J., and Chu, J. O., J. Appl. Phys. 75, 3968 (1994)Google Scholar
10. Fox, B. A., and Jesser, W. A., J. Appl. Phys. 68, 2739 (1990).Google Scholar
11. Hirth, J. P., and Lothe, J., Theory of Dislocations (John Wiley & Sons, New York, 1982), 287.Google Scholar
12. Bartels, W. J., J. Vac. Sci. Technol. B 1, 338 (1983).Google Scholar
13. Halliwell, M. A. G., Advances in X-ray Analysis 33, 61 (1990).Google Scholar
14. Giannini, C., DcCaro, L., and Tapfer, L., Solid State Commun. 91, 635 (1994).Google Scholar
15. Riesz, F., Surf. Sci. Lett. 292, L817 (1993).Google Scholar
16. Gendry, M., Dronot, V., Hollinger, G., and Mahajan, S., Appl. Phys. Lett. 66, 40 (1995).Google Scholar
17. Chen, Y., Liliental-Weber, Z., Washburn, J., Klem, J. F., and Tsao, J. Y., Appl. Phys. Lett. 66, 499 (1995).Google Scholar
18. Pashley, M. D., Ilaberern, K. W., and Gaines, J. M., Appl. Phys. Lett. 58, 406 (1991).Google Scholar
19. Pidduck, A. J., Smith, G. W., Keir, A. M., and Whitehouse, C. R., Mater. Res. Soc. Symp. Proc. 317, 53 (1994).Google Scholar
20. Kamiya, I., Tanaka, H., Aspnes, D. E., Florez, L. T., Colas, E., and Harbison, J. P., Appl. Phys. Lett. 60, 1238 (1992).Google Scholar
21. Sauvage-Simkin, M., Pinchaux, R., Massies, J., Claverie, P., Jedrecy, N., Bonnet, J., and Robinson, I. K., Phys. Rev. Lett. 62, 5663 (1989).Google Scholar