Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:18:14.505Z Has data issue: false hasContentIssue false

Effects of TCO/a-Si:C:H Interface Defect States on p-i-n a-Si:H Solar Cell Performance

Published online by Cambridge University Press:  16 February 2011

Franc Smole
Affiliation:
University of Ljubljana, Faculty of Electrical and Computer Engineering, Tržaška 25, 61000 Ljubljana, Slovenia
Marko Topič
Affiliation:
University of Ljubljana, Faculty of Electrical and Computer Engineering, Tržaška 25, 61000 Ljubljana, Slovenia
Get access

Abstract

To explain realistic circumstances with regard to energy band profiles at the TCO/a-Si:C:H heterojunction, the ASPIN computer simulation has been used. Numerical calculations indicate that the increased interface defect densities result in a steep potential drop inside the interface region, while the rest of the work function difference extends into the p-layer. The detrimental effect of a-Si:C:H partial oxidation has been simulated by additionally increased density of states at a-Si:C:H surface, and its influence on the potential barrier has been analyzed. The impact of both TCO/a-Si:C:H interface states and a-Si:C:H surface states on the photoelectric properties of p-i-n a-Si:H solar cell is discussed, and a possible improvement of Voc is envisaged.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chopra, K. L., Major, S. and Pandya, D. K., Thin Solid Films 102, 1 (1983).Google Scholar
[2] Miyachi, K. et al., in Tech. Dig. Int'l PVSEC-5, Kyoto, (1990), p. 6368.Google Scholar
[3] Ashida, Y. et al., in Proc. of 22nd IEEE PVSC, Las Vegas, (1991), p. 13521357.Google Scholar
[4] Lu, Y. et al., in Mat. Res. Soc. Symp. Proc. 297 (1993), p. 3134.CrossRefGoogle Scholar
[5] Wang, S., Patriarca, F. and Evangelisti, F., in Mat. Res. Soc. Symp. Proc. 258 (1992), p. 241246.CrossRefGoogle Scholar
[6] Smole, F., Topic, M. and Furlan, J., in Proc. of PVSEC-7, Nagoya, (1993), p. 205206.Google Scholar
[7] Winer, K., Phys. Rev. B 41, 12150 (1990).CrossRefGoogle Scholar
[8] Smith, Z. and Wagner, S., Phys. Rev. Lett. 59, 688 (1987).Google Scholar
[9] Pirz, K., Fuhs, W. and Mell, H., Phil. Mag. B 63, 123 (1991).CrossRefGoogle Scholar
[10] Crandall, R. S. and Branz, H. M., in Conf. Record of 21st IEEE PVSC (1990), p. 16301635.Google Scholar
[11] Hack, M. and Shur, M., J. Appl. Phys. 58, 997 (1985).Google Scholar
[12] Gray, J. L., IEEE Trans, on Electron Devices 36, 906 (1989).Google Scholar
[13] Rubinelli, F. A., Arch, J. K. and Fonash, S. J., J. Appl. Phys. 72, 1621 (1992).Google Scholar
[14] Itoh, K. et al., in Proc. of Int'l PVSEC-3, Tokyo, (1987), p. 167171.Google Scholar
[15] Tsuge, S. et al., in Tech. Dig. Int'l PVSEC-5, Kyoto, (1990), p. 261264.Google Scholar
[16] Koinuma, H., Nakano, M. and Gonda, S., Mat. Res. Soc. Symp. Proc. 192 (1990) p. 201206.CrossRefGoogle Scholar
[17] Winer, K. and Ley, L., Phys. Rev. B 37, 8363 (1988).CrossRefGoogle Scholar