Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:16:07.383Z Has data issue: false hasContentIssue false

The Ehrlich-Schwoebel Effect for Vacancies: Low-Index Faces of Silver

Published online by Cambridge University Press:  17 March 2011

Michael I. Haftel*
Affiliation:
Nanostructures Optics Section, Naval Research Laboratory, Washington, DC 20735-5343
Get access

Abstract

We employ surface-embedded-atom-method potentials to investigate the diffusion barriers of vacancies diffusing over and near steps on the low index faces of silver. Barriers for vacancy terrace diffusion, diffusion over step-edges, and diffusion along step edges, including around corners, are calculated. Vacancies are significantly less mobile than adatoms and have large Ehrlich-Schwoebel (ES) barriers on all three faces. For Ag(100) the diffusion barrier for vacancies along step-edges is virtually the same (474 meV) as on the terrace. As in diffusion near the step edge, vacancies encounter a significant increase (213 meV) in the activation barrier when diffusing around the corner of a vacancy island (the corner analogue of the ES barrier), but the excess barrier around a kink all but disappears because exchange diffusion is favorable there. The consequences of the vacancy diffusion barriers on 3D pitting and on island diffusion and coarsening are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, G. and Hudda, F.G., J. Chem. Phys. 44, 1039, (1966); R.L.Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966).Google Scholar
2. Tersoff, J., Gon, A.W. Denier van der, and Tromp, R.M., Phys. Rev. Lett. 72, 3843 (1994).Google Scholar
3. Bromann, Karsten, Brune, Harald, Röder, Holger, and Kern, Klaus, Phys. Rev. Lett. 75, 677 (1995).Google Scholar
4. Kandel, D., Phys. Rev. Lett. 78, 499 (1997).Google Scholar
5. Khare, S.V. and Einstein, T.L., Phys. Rev. B54, 11752 (1996).Google Scholar
6. Bales, G.S. and Zangwill, A., Phys. Rev. B41, 5500 (1990); Hyeong-Chai Jeong and Ellen D.Williams, Surf.Sci. Reports 35, 171 (1999).Google Scholar
7. Hannon, J.B., Klünker, C., Giessen, M., Ibach, H., Bartelt, N.C., Hamilton, J.C., Phys. Rev. Lett. 79, 2506 (1997).Google Scholar
8. Heinonen, J., Koponen, I., Merikoski, J., and Ala-Nissila, T., Phys. Rev. Lett. 82, 2733 (1999).Google Scholar
9. Merikoski, J., Vittolainen, I., Heinonen, J., and Ala-Nissila, T., Surf. Sci. 387, 167 (1997).Google Scholar
10. Constantini, G., Rusponi, R., Gianotti, R., Boragno, C., and Valbusa, U., Surf. Sci. 416, 245 (1998).Google Scholar
11. Haftel, M.I., Phys. Rev. B48, 2611 (1993); Haftel, M.I. and Rosen, M., Phys. Rev. B 51, 4426 (1995).Google Scholar
12. Haftel, M.I. and Rosen, M., Surf. Sci. 407, 16 (1998).Google Scholar
13. Brune, H., Röder, H., Boragno, C., and Kern, K., Phys. Rev. Lett. 73, 1955 (1994).Google Scholar
14. Langelaar, M.H., Breeman, M., and Boerma, D.O., Surf. Sci. 352–354, 597 (1996).Google Scholar
15. Mehl, H., Biham, O., and Furman, I., Phys. Rev. B 60, 2106 (1999).Google Scholar
16. Amar, J.G., Family, F., and Lam, P.-M., Phys. Rev. B 50, 8781 (1994).Google Scholar
17. Zhang, Z.Y., Chen, X., and Lagally, M.G., Phys. Rev. Lett. 73, 1829 (1994).Google Scholar
18. Zhong, J., Zhang, T., Zhang, Z., and Lagally, M.G., Bull. Am. Phys. Soc. 45, 506 (2000).Google Scholar
19. Pai, W.W., Swan, A.K., Zhang, Z., and Wendelken, J.F., Phys. Rev. Lett. 79, 3210 (1997).Google Scholar
20. Stoldt, C.R., Jenks, C.J., P.A Thiel, Cadilhe, A.M., and Evans, J.W., J. Chem. Phys. 111, 5157 (1999).Google Scholar