Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T21:36:06.040Z Has data issue: false hasContentIssue false

Elaboration and Characterization of ZnO Transition Metal (Co, Mn, Ni, Fe) Doped Aerogel Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Lassaad El Mir
Affiliation:
elmirlassaad@yahoo.fr, Faculté des Sciences de Gabès, Physique des Matériaux et des Nanomatériaux Appliquée à l'Environnement, Gabès, 6072 Tunisia
Aroussi Ben Mahmoud
Affiliation:
bmaroussicamera@yahoo.com, Faculté des Sciences de Gabès, Physique des Matériaux et des Nanomatériaux Appliquée à l'Environnement, Gabès, 6072, Tunisia
H.Jurgen von Bardeleben
Affiliation:
jurgen.vonBardeleben@insp.jussieu.fr, CNRS Université Paris 6, INSP, 140, rue de Lourmel, Pa ris, 75015, France
Jean-Louis Cantin
Affiliation:
jean-louis.cantin@insp.jussieu.fr, Université Paris 6, Paris, 75015, France
Get access

Abstract

Nanocrystalline transition metal (TM=Co, Mn, Ni, Fe) doped zinc oxide powders have been elaborated by a new protocol based on slow hydrolyse of zinc acetate dissolved in methanol and supercritical drying in ethyl alcohol. The powders have a narrow size distribution with an average value of ∼ 25nm. Electron microscopy characterization showed that the size of the ZnO:TM particles did not change significantly for the different dopants. High doping levels of up to [TM] =0.25 have been investigated. X-ray diffraction studies showed the formation of the ZnO wurtzite phase for all dopants but secondary phases are equally detected. High temperature ferromagnetism was observed for Ni and Co doped powders whereas Mn doped powders showed only antiferromagnetic interactions. EPR spectroscopy indicates that the magnetism is related to the presence of extrinsic phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Katayama-Yoshida, H., Jpn. J. Appl. Phys. 39, 555(2000) and ibid 40 (2001) L334.Google Scholar
2. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287 (2000) 1015.Google Scholar
3. Janisch, R., Gopal, P., Spaldin, N. A., J. Phys: Condens. Matter 17 (2005) R657.Google Scholar
4. Seshadri, R., Current Opinion in Solid State & Materials Science 9 (2005)1.Google Scholar
5. Liu, C., Yun, F., Morkoc, H., J. of Mat. Science: Mat. In Electronics 16 (2005) 555.Google Scholar
6. Theodoropoulou, N., et al, J. of Magnetism Magnetic Materials 300 (2006) 407.Google Scholar
7. Diaconu, M. et al, J. of Magnetism and Magnetic Materials. 307 (2006) 212.Google Scholar
8. BenMahmoud, A. et al, these proceedings (2007).Google Scholar
9. Radovanovic, P. V., Gamelin, D. R., Phys. Rev. Lett. 91 (2003) 157202–1.Google Scholar
10. Schwartz, D. A. et al, J. Am. Chem. Soc. 125 (2003)13205.Google Scholar
11. Thota, S., Dutta, T., J. Kumar J. Phys.: Condens. Matter 18 (2006) 2473.Google Scholar
12. Farley, N. R. S. et al, J. Mat. Chemistry 14 (2004)1087.Google Scholar
13. Kim, Y. M. et al, Solid State Communications 129 (2004) 175.Google Scholar
14. Chikoidze, E. et al, J. Appl. Phys. 97 (2005)10D327.Google Scholar
15. BenMahmoud, A. et al, J. Appl. Phys. to be published (2006).Google Scholar
16. Sako, S., Ohshima, K., J. Phys. Soc. Japan 64 (1995) 944.Google Scholar