Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:09:32.878Z Has data issue: false hasContentIssue false

Elastic Polymer Guest-Host Optical Limiters

Published online by Cambridge University Press:  03 September 2012

M. E. De Rosa
Affiliation:
WL/MLPJ, Materials Directorate, Wright Laboratory, Wright-Patterson AFB, OH 45433
W. Su
Affiliation:
WL/MLPJ, Materials Directorate, Wright Laboratory, Wright-Patterson AFB, OH 45433
M. C. Brant
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Dayton, OH 45431
D. G. Mclean
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Dayton, OH 45431
Get access

Abstract

This paper presents the results of the bulk laser damage performance of undoped epoxy thermosets with glassy and rubbery mechanical properties and two commercial polymethylmethacrylate (PMMA) samples. We demonstrate how thermomechanical properties such as glass transition temperature (Tg) and equilibrium shear modulus (Ge) affect laser damage threshold. The rubbery epoxy elastomer shows a damage threshold fluence one order of magnitude higher than PMMA and 2.5 orders of magnitude higher than a glassy epoxy thermoset. A solid-state guest-host limiter is made by doping the epoxy elastomer with zinc octabromotetraphenylporphyrin (ZnOBP). The limiting performance of the elastomer limiter is compared to a solution of ZnOBP and C60 in toluene. Photochemical hysteresis effects in the solid limiter were also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kost, A., Tutt, L., Klein, M.B., Dougherty, T.K., Elias, W.E., Opt. Lett. 18, p. 334 (1993).Google Scholar
2. Perry, J.W., Mansour, K., Lee, I.-Y.S., Wu, X.-L., Bedworth, P.V., Chen, C.-T., Ng, D., Marder, S.R., Miles, P., Wada, T., Tian, M., Sasabe, H., Science 273, p. 1533 (1996).Google Scholar
3. Dougherty, T.K., Dlias, W.E., Kost, A.R., Klein, M.B., U.S. Patent #5,391,329 (1995).Google Scholar
4. McCahon, S.W., Tutt, L.W., U.S. Patent#5,080,469 (1992).Google Scholar
5. O'Connell, R.M. and Saito, T.T., Opt. Eng. 22, p. 393 (1983).Google Scholar
6. O'Connell, R.M., Deaton, T.F., Saito, T.T., Appl. Optics 23, p. 682 (1984).Google Scholar
7. Manenkov, A.A. and Nechitailo, V.S., Sov. J. Quantum Electron. 10, p. 347 (1980).Google Scholar
8. Genkin, V.N., Izvozchikova, V.A., Kitai, M.S., Myl'nikov, M. Yu., Sov. J. Quantum Electron. 15, p. 1504 (1986).Google Scholar
9. Dyumaev, K.M., Manenkov, A.A., Maslyukov, A.P., Matyushin, G.A., Nechitailo, V.S., Prokhorov, A.M., Sov. J. Quantum Electron. 13, p. 503 (1983).Google Scholar
10. Butenin, A.V. and Kogan, B.Y., Sov. J. Quantum Electron. 6, p. 611 (1976).Google Scholar
11. Bhyrappa, P. and Krishnan, V., Inorg. Chem. 30, p. 239 (1991).Google Scholar
12. Tang, N., Su, W., Cooper, T., Adams, W., Brandelik, D., Brant, M., McLean, D., Sutherland, R., SPIE 2853, p. 149 (1996).Google Scholar