Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T00:51:43.984Z Has data issue: false hasContentIssue false

Elastomeric and nanoporous membranes via Langmuir Blodgett transfer of cross-linked monolayers

Published online by Cambridge University Press:  11 February 2011

Hui Xu
Affiliation:
Macromolecular and Organic Chemistry, OC3, University of Ulm, Germany
Robert Heger
Affiliation:
Max-Planck-Institut f. Kolloid- & Grenzflächenforschung, Berlin, Germany
Frank Mallwitz
Affiliation:
Macromolecular and Organic Chemistry, OC3, University of Ulm, Germany Max-Planck-Institut f. Kolloid- & Grenzflächenforschung, Berlin, Germany
Marita Blankenhagel
Affiliation:
Max-Planck-Institut f. Kolloid- & Grenzflächenforschung, Berlin, Germany
Claire Peyratout
Affiliation:
Max-Planck-Institut f. Kolloid- & Grenzflächenforschung, Berlin, Germany
Werner. A. Goedel
Affiliation:
Macromolecular and Organic Chemistry, OC3, University of Ulm, Germany BASF-AG, Polymer Physics, Ludwigshafen, Germany
Get access

Abstract

Nanometer thin membranes with considerable application potential in micro mechanics and materials science can be prepared by transferring cross-linked monomolecular layers of polyisoprenes or polyisobutenes with ionic head groups from the water surface to solid substrates with holes. Especially if monolayers of low glass transition polymers are cross-linked, elastomeric membranes are obtained, which might find application in micro mechanical devices like membrane valves and pumps. Incorporation of hydrophobised colloids leads to composite membranes, which can be converted into porous membranes via removal of the colloids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Seufert, , Fakirov, M., Wegner, C., G. Advanced Materials 1995 7 5255 Google Scholar
2 Kunitake, M., Nishi, T., Yamamoto, H., Nasu, K., Manabr, O., Nakashima, N. Langmuir 1994, 10, 3207 Google Scholar
3 Santos, R., Kennedy, J.P., Walters, M., Polymer Bulletin, 1984, 11, 261 Google Scholar
4 a) Kennedy, J.P., Ross, L.R., Lackey, J.E., Nuyken, O., Polymer Bulletin, 1981, 4, 67;Google Scholar
b) Kennedy, J.P., Ross, L.R., Nuyken, O.,, Polymer Bulletin, 1981, 5, 5 Google Scholar
5 Storey, R. F., Lee, Y., J. Polym. Sci. Polym. Chem. 1991, 29, 317 Google Scholar
6 Goedel, W. A., Xu, C., Frank, C. W., Langmuir 1993, 9, 1184 Google Scholar
7 Heger, R. and Goedel, W. A., Macromolecules 1996, 29, 8912 Google Scholar
8 Christie, P., Petty, M. C., Roberts, G. G., Thin Solid Films, 1985, 134, 75 Google Scholar
9 Lenk, T. J., Lee, D. H. T., Koberstein, J. T., Langmuir 1994, 10, 1857 Google Scholar
10 Baltes, H., Schwendler, M., Helm, C. A., Heger, R., Goedel, W. A. Macromolecules 1997, 30, 6633 Google Scholar
11 Goedel, W. A., Heger, R., Langmuir, 1998, 14, p. 34703474 Google Scholar
12 Mallwitz, F., Goedel, W.A., Angew. Chemie Int. Ed. 2001, 40, 2557–2557 - Angew. Chemie 2001, 113, 2716–2718Google Scholar