Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T09:23:57.341Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of High Mobility W-doped In2O3 Thin Films

Published online by Cambridge University Press:  01 February 2011

Ram Gupta
Affiliation:
ramgupta@missouristate.edu, Missouri State University, Physics, Astronomy and Materials Science, 901 South National Avenue, Springfield, MO, 65897, United States, 4178366298, 4178366226
K. Ghosh
Affiliation:
KartikGhosh@missouristate.edu, Missouri State University, Department of Physics, Astronomy, and Materials Science, Springfield, MO, 65897, United States
S. R. Mishra
Affiliation:
SRMishra@memphis.edu, The University of Memphis, Department of Physics, Memphis, TN, 38152, United States
P. K. Kahol
Affiliation:
PawanKahol@missouristate.edu, Missouri State University, Department of Physics, Astronomy, and Materials Science, Springfield, MO, 65897, United States
Get access

Abstract

Transparent conducting oxides (TCO) have been widely used for opto-electronic devices such as light emitting diodes, photo-detectors, touch panels, flat panel displays, and solar cells. Low resistivity, high mobility, and good transparency are the prime requirements for these devices. There is an increasing interest in TCO with high mobility to decrease their electrical resistivity without a significant decrease in the optical transparency. Highly conducting and transparent tungsten doped indium oxide thin films were deposited on quartz substrate by ablating the sintered In2O3 target containing WO3 with a KrF excimer laser (λ = 248 nm and pulsed duration of 20 ns). The effect of growth temperature and oxygen pressure on structural, optical, and electrical properties has been studied. The transparency of the films largely depends on the growth temperature. The electrical properties are found to depend strongly on the growth temperature as well as on oxygen pressure. The temperature dependence resistivity measurement shows the transition from semiconductor to metallic behavior as the growth temperature increases from room temperature to 500 °C. The high mobility (up to 358 cm2V−1s−1), low resistivity (1.1 × 10−4 Ω.cm), and relatively high transmittance of ∼90 % have been observed on the optimized film grown at 500 °C and under oxygen pressure at 1 × 10−6 bar.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, H., Horwitz, J. S., Kushto, G. P., Qadri, S. B., Kafafi, Z. H. and Chrisey, D. B., Appl. Phys. Lett. 78, 1050 (2001).10.1063/1.1350595Google Scholar
2. Granqvist, C. G. and Hultaker, A., Thin Solid Films 41, 1 (2002).10.1016/S0040-6090(02)00163-3Google Scholar
3. Singh, A. V. and Mehra, R. M., J. Appl. Phys. 90, 5661 (2001).10.1063/1.1415544Google Scholar
4. Lee, J. H., Lee, S. Y. and Park, B. O., Mater. Sci., Eng. B 127, 267 (2006).10.1016/j.mseb.2005.10.008Google Scholar
5. Newhouse, P. F., Park, C. H., Keszler, D. A., Tate, J. and Nyholm, P. S., Appl. Phys. Lett. 87, 112108 (2005).10.1063/1.2048829Google Scholar
6. Hest, H. F. A. M., Dabney, M. S., Perkins, J. D. and Ginley, D. S., Thin Solids Films 496, 70 (2006).10.1016/j.tsf.2005.08.314Google Scholar
7. Hest, M. F. A. M., Dabney, M. S., Perkins, J. D., Ginley, D. S. and Taylor, M. P., Appl. Phys. Lett. 87, 032111 (2005).Google Scholar
8. Meng, Y., Yang, X., Chen, H., Shen, J., Jiang, Y., Zhang, Z. and Hua, Z., J. Vac. Sci. Technol. A 20, 288 (2002).10.1116/1.1421595Google Scholar
9. Warmsingh, C., Yoshida, Y., Readey, D. W., Teplin, C. W., Perkins, J. D., Parilla, P. A., Gedvilas, L. M., Keyes, B. M. and Ginley, D. S., J. Appl. Phys. 95, 3831 (2004).10.1063/1.1646468Google Scholar
10. Manoj, P. K., Gopchandran, K. G., Koshy, P., Vaidyan, V. K. and Joseph, B., Opt. Mater. 28, 1405 (2006).10.1016/j.optmat.2005.08.012Google Scholar
11. Khranovskyy, V., Grossner, U., Nilsen, O., Lazorenko, V., Lashkarev, G. V., Svensson, B. G. and Yakimova, R., Thin Solid Films 515, 472 (2006).10.1016/j.tsf.2005.12.269Google Scholar
12. Lee, W. E., Fang, Y. -K., Ho, J.-J., Chen, C. -Y., Chiou, L. -H., Wang, S. -J., Dai, F., Heieh, T., Tsai, R. -Y., Huang, D. and Ho, F. C., Solid State Electron. 46, 477 (2002).10.1016/S0038-1101(01)00307-0Google Scholar
13. Yong, T. K., Tou, T. Y. and Teo, B. S., Appl. Surf. Sci. 248, 388 (2005).10.1016/j.apsusc.2005.03.093Google Scholar
14. Yan, M., Lane, M., Kannewurf, C. R. and Chang, R. P. H., Appl. Phys. Lett. 78 (2001) 2342.10.1063/1.1365410Google Scholar
15. Gupta, R.K., Ghosh, K., Mishra, S.R. and Kahol, P.K., Appl. Surf. Sci. (In Press).Google Scholar
16. Bhosle, V., Tiwari, A. and Narayan, J., J. Appl. Phys. 100, 033713 (2006).10.1063/1.2218466Google Scholar