Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:00:36.685Z Has data issue: false hasContentIssue false

Electrical Instabilities and 1/f Noise in Organic Pentacene Thin Film Transistors

Published online by Cambridge University Press:  21 March 2011

P. V. Necliudov
Affiliation:
Rensselaer Polytechnic Institute, Dept. of Electrical, Computer and System Engineering, Troy, NY;
M. Shur
Affiliation:
Rensselaer Polytechnic Institute, Dept. of Electrical, Computer and System Engineering, Troy, NY;
D. J. Gundlach
Affiliation:
Pennsylvania State University, Dept. of Electrical Engineering, University Park, PA.
T. N. Jackson
Affiliation:
Pennsylvania State University, Dept. of Electrical Engineering, University Park, PA.
Get access

Abstract

We report on the influence of Bias-Temperature Stress (BTS) on the pentacene Thin Film Transistors (TFTs) electrical characteristics and on their 1/f noise level. The gate BTS primarily affects the TFT threshold voltage, leaving both mobility and sub-threshold slope values almost unchanged. The degree of the threshold voltage shift induced by the positive or negative BTS depends on the TFT design and the BTS parameters. The current-voltage characteristics time dependence of the organic TFTs, subjected to the BTS, resembles that for amorphous-Si TFTs. The results of the 1/f noise measurements in the organic TFTs allowed us to conclude that the gate BTS primarily affects the TFT contact regions, resulting in the increase of both the contact noise and the contact resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gundlach, D. J., Kuo, C. C., Nelson, S. F., Jackson, T. N., 57th Device Research Conference Digest (1999) pp. 164165.Google Scholar
2. Klauk, H., Gundlach, D. J., Nichols, J. A., Sheraw, C. D., Bonse, M., and Jackson, T. N., Solid State Technology 43, 6377 (2000).Google Scholar
3. Bonse, M., Thomasson, D. B., Klauk, H., Gundlach, D. J., Jackson, T. N., 1998 International Electron Devices Meeting Technical Digest 249252 (1998).Google Scholar
4. Torsi, L., Dodabalapur, A.; Sabbatini, L.; Zambonin, P.G., Sensors and Actuators B (Chemical) B67, 312316 (2000).Google Scholar
5. Lin, Y.Y., Gundlach, D.J., Nelson, S.F., and Jackson, T.N., IEEE Transaction on Electron Devices 8, 320325 (1997).Google Scholar
6. Jackson, T. N., Lin, Y. Y., Gundlach, D. J., Klauk, H. IEEE Journal of Selected Topics in Quantum Electronics 4, 100104 (1998).Google Scholar
7. Necliudov, P.V., Shur, M. S., Gundlach, D. J., Jackson, T. N., ISDRS 1999 Proceedings, (1999) pp. 373376.Google Scholar
8. Necliudov, P. V., Shur, M. S., Gundlach, D. J., Jackson, T. N., accepted for publication in Journal of Applied Physics (August 2000).Google Scholar
9. Wang, J., Gundlach, D. J., Kuo, C. C., and Jackson, T. N., 41st Electronic Materials Conference Digest (1999) p. 16.Google Scholar
10. Chiang, C., Kanicki, J., Takechi, K., Jpn. J. Appl. Phys. 37, 47044710 (1998).Google Scholar
11. Necliudov, P. V., Shur, M. S., Rumyantsev, S., Gundlach, D. J., Jackson, T. N., Journal of Applied Physics 88, 53955399 (2000).Google Scholar