Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T00:49:28.639Z Has data issue: false hasContentIssue false

Electrical, Optical and Ionic Probe inside Transmission Electron Microscope

Published online by Cambridge University Press:  21 February 2013

Xuedong Bai
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ,
Zhi Xu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ,
Peng Gao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ,
Kaihui Liu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ,
Wenlong Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ,
Enge Wang
Affiliation:
School of Physics, Peking University, Beijing 100871, China
Get access

Abstract

In-situ transmission electron microscopy (TEM) method is powerful in a way that it can directly correlate the atomic-scale structure with physical and chemical properties. We will report on the construction and applications of the homemade in-situ TEM electrical and optical holders. Electrical transport of carbon nanotubes and photoconducting response on bending of individual ZnO nanowires have been studied inside TEM. Oxygen vacancy electromigration and its induced resistance switching effect have been probed in CeO2 films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohnishi, H., Kondo, Y. and Takayangi, K., Nature 395, 780 (1998).CrossRefGoogle Scholar
Poncharal, P., Wang, Z. L., Ugarte, D. and de Heer, W. A., Science 283, 1513 (1999).10.1126/science.283.5407.1513CrossRefGoogle Scholar
Erts, D., Olin, H., Ryen, L., Olsson, E. and Thölén, A., Phys. Rev. B 61, 12725 (2000).10.1103/PhysRevB.61.12725CrossRefGoogle Scholar
Liu, K. H., Wang, W. L., Xu, Z., Bai, X. D., Wang, E. G., Yao, Y. G., Zhang, J. and Liu, Z. F., J. Am. Chem. Soc. 131, 62 (2009).10.1021/ja808593vCrossRefGoogle Scholar
Zhou, W. Y., Bai, X. D., Wang, E. G. and Xie, S. S., Adv. Mater. 21, 4565 (2009).10.1002/adma.200901071CrossRefGoogle Scholar
Gao, P., Wang, Z. Z., Liu, K. H., Xu, Z., Wang, W. L., Bai, X. D. and Wang, E. G., J. Mater. Chem. 19, 1002 (2009).10.1039/B816791ECrossRefGoogle Scholar
Gao, P., Kang, Z. C., Fu, W. Y., Wang, W. L., Bai, X. D. and Wang, E. G., J. Am. Chem. Soc. 132, 4197 (2010).10.1021/ja9086616CrossRefGoogle Scholar
Gao, P., Wang, Z. Z., Fu, W. Y., Liao, Z. L., Liu, K. H., Wang, W. L., Bai, X. D. and Wang, E. G., Micron 41, 301 (2010).10.1016/j.micron.2009.11.010CrossRefGoogle Scholar
Shimada, T., Sugai, T., Ohno, Y., Kishimoto, S., Mizutani, T., Yoshida, H., Okazaki, T. and Shinohara, H., Appl. Phys. Lett. 84, 2412 (2004).CrossRefGoogle Scholar
Wang, S., Liang, X. L., Chen, Q., Zhang, Z. Y. and Peng, L. M., J. Phys. Chem. B 109, 17361 (2005).CrossRefGoogle Scholar
Hansson, A. and Stafstrom, S., Phys. Rev. B 67, 075406 (2003).CrossRefGoogle Scholar
Yan, Q. M., Wu, J., Zhou, G., Duan, W. H. and Gu, B. L., Phys. Rev. B 72, 155425 (2005).CrossRefGoogle Scholar
Collins, P., Arnold, M. S. and Avouris, P., Science 292, 706 (2001).CrossRefGoogle Scholar
Wang, Z. L. and Song, J. H., Science 312, 242 (2006).10.1126/science.1124005CrossRefGoogle ScholarPubMed
Wang, X. D., Zhou, J., Song, J. H., Liu, J., Xu, N. S. and Wang, Z. L., Nano. Lett. 6, 2768 (2006) .CrossRefGoogle Scholar
Wang, Z. L. and Kang, Z. C., “Functianl and smart materials: structural evolution and structure analysis” (Plenum Press, 1998).Google Scholar
Sharma, R., Crozier, P. A., Kang, Z. C. and Eyring, L., Philosophical Magazine 84, 2731 (2004).10.1080/14786430410001671467CrossRefGoogle Scholar
Crozier, P. A., Wang, R. G. and Sharma, R., Ultramicroscopy 108, 1432 (2008).CrossRefGoogle Scholar