Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T10:04:28.888Z Has data issue: false hasContentIssue false

Electrical Properties and Schottky Barriers of Metal-Semiconductor Interfaces

Published online by Cambridge University Press:  25 February 2011

M.O. Aboelfotoh*
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The electrical properties of metal/Si(100) and metal/Ge(100) interfaces formed by the deposition of metal on both n-type and p-type Si(100) and Ge(100) have been studied in the temperature range 77-295 K with the use of current- and capacitance-voltage techniques. Compound formation is found to have very little or no effect on the Schottky-barrier height and its temperature dependence. For silicon, the barrier height and its temperature dependence are found to be affected by the metal. For germanium, on the other hand, the barrier height and its temperature dependence are unaffected by the metal. The temperature dependence of the Si and Ge barrier heights is found to deviate from the predictions of recent models of Schottky-barrier formation based on the suggestion of Fermi-level pinning in the center of the semiconductor indirect band gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bardeen, J., Phys. Rev. 71, 717 (1947).CrossRefGoogle Scholar
2. Tersoff, J., Phys. Rev. Lett. 52, 465 (1984);CrossRefGoogle Scholar
Phys. Rev. B32, 6968 (1985).CrossRefGoogle Scholar
3. Spicer, W.E., Lindau, I., Skeath, P.R., Su, C.Y., and Chye, P.W., Phys. Rev. Lett. 44, 420 (1980);CrossRefGoogle Scholar
J. Vac. Sci. Technol. 16, 1422 (1979);Google Scholar
Newman, N., van Schilfgaarde, M., Kendelwicz, T., Williams, M.D. and Spicer, W.E., Phys. Rev. B33, 1146 (1986).CrossRefGoogle Scholar
4. Stiles, K. and Kahn, A., Phys. Rev Lett. 60, 440 (1988);CrossRefGoogle Scholar
Ludeke, R., Jezequel, G. and Taleb-lbrahimi, A., Phys. Rev. Lett. 61, 601 (1988).CrossRefGoogle Scholar
5. Aboelfotoh, M.O., Cros, A., Svensson, B.G., and Tu, K.N., Phys. Rev. B (in press).Google Scholar
6. Arizumi, T. and Hirose, M., Japan J. Appl. Phys. 8, 749 (1969).CrossRefGoogle Scholar
7. Aboelfotoh, M.O., J. Appl. Phys. 64, 4046 (1988).CrossRefGoogle Scholar
8. Aboelfotoh, M.O., J. Appl. Phys. 66, 262 (1989).CrossRefGoogle Scholar
9. Padovani, F.A. and Summer, G.G., J. Appl. Phys. 36, 3744 (1965).CrossRefGoogle Scholar
10. Tuck, B., Eftekhari, G., and deCogan, D.M., J. Phys. D: Appl. Phys. 15, 457 (1982).CrossRefGoogle Scholar
11. Thanailakis, A., J. Phys. C: Solid St. Phys. 8, 655 (1975).CrossRefGoogle Scholar
12. Crowell, C.R., Sze, S.M., and Spitzer, W.G., Appl. Phys. Lett. 4, 91 (1964).CrossRefGoogle Scholar
13. Duboz, J.Y., Badoz, P.A., Arnaud d’Avitaya, F., and Rosencher, E. (unpublished).Google Scholar
14. Levine, J.D., J. Appl. Phys. 42, 3991 (1971);CrossRefGoogle Scholar
Solid-State Electron. 17, 1083 (1974).CrossRefGoogle Scholar
15. Crowell, C.R., Solid-State Electron. 20, 171 (1977).CrossRefGoogle Scholar
16. Aboelfotoh, M.O. and Svensson, B.G. (unpublished).Google Scholar
17. Saxena, A.N., Surf. Sci. 13, 151 (1969).CrossRefGoogle Scholar
18. Cros, A., Aboelfotoh, M.O., and Tu, K.N., J. Appl. Phys. (in press).Google Scholar
19. Rhoderick, E.H., Metal-Semicoductor Contacts (Clarendon, Oxford, 1980).Google Scholar
20. Thanailakis, A. and Northrop, D.C., Solid-State Electron. 16, 1383 (1973).CrossRefGoogle Scholar
21. Aboelfotoh, M.O. and Tu, K.N., Phys. Rev. B34, 2311 (1986);CrossRefGoogle Scholar
Aboelfotoh, M.O., Phys. Rev. B39, 5070 (1989).CrossRefGoogle Scholar