Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T22:08:32.728Z Has data issue: false hasContentIssue false

Electrical Transport in Carbon Nanotube Y-junctions- a Paradigm for Novel Functionality at the Nanoscale

Published online by Cambridge University Press:  01 February 2011

Jeongwon Park
Affiliation:
jepark@ucsd.eduUC, San DiegoMaterials Science programLa Jolla CA 92093-0411United States
Chiara Daraio
Affiliation:
cdaraio@ucsd.edu, UC, San Diego, Materials Science program, La Jolla, CA, 92093-0411, United States
Apparao Rao
Affiliation:
arao@clemson.edu, Clemson University, Clemson, SC, 29634-0978, United States
Prabhakar Bandaru
Affiliation:
pbandaru@ucsd.edu, UC, San Diego, Materials Science program, La Jolla, CA, 92093-0411, United States
Get access

Abstract

Carbon Nanotube (CNT) morphologies with a self-contained gate, such as Y-junctions, offer a new way of exploiting features unique to the nanoscale, such as quantum ballistic transport. The advantages of low power and high frequency operation can then be applied to the fabrication of novel devices. Several other novel functionalities in Y- CNTs, including rectification, switching, high-frequency performance, and logic gates have been experimentally verified1. Y-CNT geometry dependent current blocking behavior, as a function of annealing temperature has also been observed. In view of the above observations, we propose that Y-CNTs can be used as prototypical nanoelectronic components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bandaru, P. R., Daraio, C., Jin, S. and Rao, A. M., Nature Materials, 4, 663, (2005)Google Scholar
2. Avouris, P., Accounts of Chemical Research, 35, 1026, (2002)Google Scholar
3. Tans, S. J., Verschueren, A. R. M. and Dekker, C., Nature, 393, 49, (1998)Google Scholar
4. Appenzeller, J., Knoch, J., Martel, R. and Derycke, V., IEEE Tranactions on Nanotechnology, 1, 184, (2002)Google Scholar
5. Postma, H. W. C., Teepen, T., Yao, Z., Grifoni, M. and Dekker, C., Science, 293, 76, (2001)Google Scholar
6. Gothard, N., Daraio, C., Gaillard, J., Zidan, R., Jin, S. and Rao, A. M., Nanoletters, 4, 213, (2004)Google Scholar
7. Teo, K. B. K., Singh, C., Chhowalla, M. and Milne, W. I., Catalytic Synthesis of Carbon Nanotubes and Nanofibers, American Scientific Publishers, Stevenson Ranch, CA, (2004)Google Scholar
8. Forro, L. and Schonenberger, C., Physical properties of Multi-wall Nanotubes, 80, Springer-Verlag, Heidelberg, (2001)Google Scholar
9. Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., Lowndes, D. H. and Simpson, M. L., Journal of Applied Physics, 97, 041301, (2005)Google Scholar
10. Gopal, V., Radmilovic, V. R., Daraio, C., Jin, S., Yang, P. and Stach, E. A., Nanoletters, 4, 2059, (2004)Google Scholar
11. Andriotis, A. N., Menon, M., Srivastava, D. and Chernozatonski, L., Phys Rev Lett, 87, 066802, (2001)Google Scholar
12. Shorubalko, I., Xu, H. Q., Omling, P. and Samuelson, L., Appl Phys Lett, 83, 2369, (2003)Google Scholar
13. Palm, T. and Thylen, L., J Appl Phys, 79, 8076, (1996)Google Scholar
14. Andriotis, A. N., Appl Phys Lett, 79, 266, (2001)Google Scholar
15. Son, Y.-W., Ihm, J., Cohen, M. L., Louie, S. G. and Choi, H. J., arXiv:cond-mat/0511447, (2005)Google Scholar
16. Beale, M. and Mackay, P., Philosophical Magazine B, 65, 47, (1992)Google Scholar
17. Bandaru, P. R., et al (manuscript in preparation)Google Scholar
18. Muller, R. S. and Kamins, T. I., Device Electronics for Integrated Circuits, 2, John Wiley, New York, (1986)Google Scholar