Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T02:29:57.188Z Has data issue: false hasContentIssue false

Electrochemical Charge Transfer to Diamond and Other Materials

Published online by Cambridge University Press:  31 January 2011

Vidhya Chakrapani
Affiliation:
vchakrapani@gmail.com, Case Western Reserve University, Chemical Engineering, Cleveland, Ohio, United States
John C. Angus
Affiliation:
john.angus@case.edu, Case Western Reserve University, Chemical Engineering, Cleveland, Ohio, United States
Kathleen Kash
Affiliation:
kathleen.kash@case.edu, Case Western Reserve University, Chemical Engineering, Cleveland, Ohio, United States
Alfred B. Anderson
Affiliation:
aba@po.cwru.edu, Case Western Reserve University, Chemical Engineering, Cleveland, Ohio, United States
Sharvil Desai
Affiliation:
sharvil.desai@louisville.edu, University of Louisville, Physics, Louisville, Kentucky, United States
Gamini Sumanasekera
Affiliation:
gamini.sumanasekera@louisville.edu, University of Louisville, Physics, Louisville, Kentucky, United States
Get access

Abstract

The oxygen redox couple in adsorbed water films acts as an “electrochemical ground” that tends to pin the Fermi level in solids at the electrochemical potential of the redox couple. We discuss this effect on the conductivity of diamond; the conductivity type of sp2-based carbons including single-walled, semiconducting carbon nanotubes and graphene; the photoluminescence of GaN and ZnO; and the contact charging of metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 975 (1989).Google Scholar
2 Gi, R. S., Mizumasa, T., Akiba, Y., Hirose, Y., Kurosu, T. and Iida, M., Jap. J. Appl. Phys. Part 1, 34, 5550 (1995).Google Scholar
3 Gi, R. S., Ishikawa, T., Tanaka, S., Kimura, T., Akiba, Y. and Iida, M., Jap. J. Appl. Phys. Part 1, 36, 2057 (1997).Google Scholar
4 Gi, R. S., Tashiro, K., Tanaka, S., Fujisawa, T., Kimura, H., Kurosu, T. and Iida, M., Jpn. J. Appl. Phys. 38, 3492 (1999).Google Scholar
5 Maier, F., Riedel, M., Mantel, B., Ristein, J. and Ley, L., Phys. Rev. Lett. 85, 3472 (2000).Google Scholar
6 Foord, J. S., Lau, C.H., Hiramatsu, M., Jackman, R.B., Nebel, C.E. and Bergonzo, P., Diamond and Related Mat. 11, 856 (2002).Google Scholar
7 Chakrapani, V., Eaton, S. C., Anderson, A. B., Tabib-Azar, M. and Angus, J. C., Electrochem. and Solid State Lett. 8, E4 (2005).Google Scholar
8 Chakrapani, V., Angus, J. C., Anderson, A. B., Wolter, S. D., Stoner, B. R. and Sumanasekera, G. U., Science 318, 1424 (2007).Google Scholar
9 Shapoval, V. I., Novosyolova, I. A., Malyshev, V. V. and Kushkhov, H. B., Electrochim. Acta 40, 1031 (1995).Google Scholar
10 Ristein, J., Science 313, 1057 (2006).Google Scholar
11 Strobel, P., Riedel, M., Ristein, J. and Ley, L., Nature 420, 439 (2004).Google Scholar
12 Qi, D., Chen, W., Gao, X., Wang, L., Chen, S., Loh, K.P., and Wee, A. T. S., J. Am. Chem. Soc. 129, 8084 (2007).Google Scholar
13 Chakrapani, V., Pendyala, C., Kash, K., Anderson, A. B., Sunkara, M. K. and Angus, J. C., J. Am. Chem. Soc. 130, 12944 (2008).Google Scholar
14 Sque, S. J., Jones, R. and Briddon, P. R., phys. stat. sol. (a) 204, 3078 (2007).Google Scholar
15 Chen, W., Qi, D., Gao, X. and Wee, A. T. S., Progress in Surface Science 84, 279 (2009).Google Scholar
16 Liu, C. and Bard, A. J., Nature Mater. 7, 505 (2008).Google Scholar
17 Gurevich, Yu. Ya. and Pleskov, Yu. V., Russ. J. Electrochem., (Transl. of Elektrokhimiya) 18, 1477 (1982).Google Scholar
18 Trasatti, S., Pure and Appl. Chem. 58, 955 (1986).Google Scholar
19 Reiss, H. and Heller, A., J. Phys. Chem 89, 4207 (1985).Google Scholar
20 Reiss, H., J. Phys. Chem. 89, 3783 (1985).Google Scholar
21 Adamson, A. W., Physical Chemistry of Surfaces, John Wiley, NY, 4th edition, 1982.Google Scholar
22 Mareš, J. J., Hubík, P., Krištofik, J., Ristein, J., Strobel, P., Ley, L., Diamond and Rel. Mat. 17, 1356 (2008).Google Scholar
23 Ristein, J., Reidel, M., Stammler, M., Mantel, B. F. and Ley, L., Diamond and Related Mat. 11, 359 (2002).Google Scholar
24 Sumanasekeran, G. and Desai, S., personal communication, 2009.Google Scholar
25 Chakrapani, V., Angus, J. C., Anderson, A. B., Sumanasekera, G., “Diamond Electronics Symposium,” Mat. Res. Soc. Symp. Proc. 2007, 956, paper J1501.Google Scholar