Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T17:13:17.575Z Has data issue: false hasContentIssue false

Electrochemical Feature of Hydrated Molybdenum Oxides in Lithium Batteries

Published online by Cambridge University Press:  10 February 2011

B. Yebka
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center, Warren, MI 48090
C. Julien
Affiliation:
Laboratoire des Milieux Desordonnes et Heterogenes, UMR 7603, University Pierre et Marie Curie, 4 place Jussieu, 75252 Paris 05, France
G.A. Nazri
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center, Warren, MI 48090
Get access

Abstract

Oxide-hydrates of molybdenum [OHM] are investigated as 3-volt cathode materials for rechargeable lithium batteries. The oxides and oxide-hydrates of molybdenum have been prepared at various degrees of heat treatment. The oxide-hydrates of molybdenum with different water content showed a much better performance as cathode of the rechargeable lithium battery than that of MoO3. From these results, it was found that the crystalline-bonded water molecules play an important role for the high discharge capacity and high cyclability. We report the electrochemical characteristics of Li/OHM batteries using the oxides and oxide-hydrates of molybdenum which have been prepared with various degrees of heat treatment of molybdic acid. The oxide has a corrugated layer structure consisting of corner-shared MoO6 octahedra. This structure provide electronic conductivity within a layer and high lithium ion mobility between layers. The mechanism of dehydration and structural rearrangement of molybdic acid during heat treatment were studies by thermal analysis, X-ray diffraction, Raman and infrared spectroscopy. Thermal analysis indicates a two-step dehydration and formation of orthorhombic α-MoO3 and monoclinic β-MoO3. Discharge profiles and kinetics of the materials are dependent on the amount of “structural water” into the host lattice. The electro-insertion of Li ions occurs mainly in two steps in the potential range between 3.0 and 1.5 V (compositional range 0<xLi<l.5). Kinetic measurement show that Li ions are highly mobile in the OHM framework. The partial molar quantities δGx, δSx, and δHx, estimated from EMF-temperature measurements and coulometric titration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Araki, B., Mailhe, C., Baffier, N., Livage, J., & Vedel, J., Solid State lonics, 9–10, 439 (1983).Google Scholar
[2] Miura, T, Sugiura, E., Kishi, T., & Nagai, T., Denki Kagaku, 56, 413 (1988).Google Scholar
[3] Baddour, R., Pereira-Ramos, J.P., Messina, R., & Perichon, J.. J. Electroanal. Chem. 277, 377 (1990).Google Scholar
[4] Kumagai, N., Kumagai, N., & Tanno, K., J. Appl. Electrochem. 18, 857 (1988).Google Scholar
[5] Julien, C., El-Farh, L., Balkanski, M., Hussain, O.M., & Nazri, G.A., Appl. Surf. Sci. 65–66, 325 (1993).Google Scholar
[6] Yebka, B., Thesis, University Pierre & Marie Curie, Jussieu, France (1996).Google Scholar
[7] Hinokuma, K., Kishimoto, A., & Kudo, T., J. Electrochem. Soc. 141, 876 (1994).Google Scholar
[8] Crouch-Baker, S., & Dickens, P.G., Solid State Ionics 32–33, 219 (1989).Google Scholar
[9] Yebka, B., & Julien, C., Ionics 2, 196 (1996).Google Scholar
[10] Guzman, C., Yebka, B., Livage, J., & Julien, C., Solid State lonics, 86–88, 407 (1996).Google Scholar
[11] Dampier, F.W., J. Electrochem. Soc. 121, 656 (1974).Google Scholar
[12] Margalit, N., J. Electrochem. Soc. 121, 1460 (1974).Google Scholar
[13] Besenhard, J.O., & Schollhdm, R., J. Power Sources 1, 267 (1976/1977).Google Scholar
[14] Christian, P.A., Carides, J.N., DiSalvo, F.J. & Waszczak, J.V., J. Electrochem. Soc. 127, 2315 (1980).Google Scholar
[15] Besenhard, J.O., Heydecke, J., Wudy, E., Fritz, H.P. & Foag, W., Solid State Ionics 8, 61 (1983).Google Scholar
[16] Kumagai, N., Kumagai, N. & Tanno, K., Electrochim. Acta 32, 1521 (1987).Google Scholar
[17] Kumagai, N., Kumagai, N. & Tanno, K., J. Appl. Electrochem. 18, 857 (1988).Google Scholar
[18] Sugawara, M., Kitada, Y. and Matsuki, K., J. Power Sources 26, 373 (1989).Google Scholar
[19] Julien, C., & Nazri, G.A., Solid State Ionics 68, 111 (1994).Google Scholar
[20] Margali, N., J. Electrochem. Soc. 121, 1460 (1974).Google Scholar
[21] Ohzuku, T. & Hirai, N., New Mater. New Processes, 2, 58 (1989).Google Scholar
[22] Julien, C., Khelfa, A., Guesdon, J.P., & Gorenstein, A., Appl. Phys. A 78, 173 (1994).Google Scholar
[23] Weppner, W., & Huggins, R.A., J. Electrochem. Soc. 124, 1569(1977).Google Scholar
[24] Günter, J.R., J. Solid State Chem. 5, 354 (1972).Google Scholar
[25] Nazri, G.A., & Julien, C., Solid State Ionics 53–56, 376 (1992).Google Scholar
[26] Godshall, N.A., & Driscoll, J.R., J. Electrochem. Soc., 131, 2221 (1984).Google Scholar
[27] Armand, M., in Materials for Advanced Batteries, Murphy, D.W., Broadhead, J., & Steele, B.C.H. (Eds.), Plenum Press, New York, 145 (1980).Google Scholar
[28] Oswald, H.R., Günter, J.R. & Dubler, E., J. Solid State Chem. 13, 330 (1975).Google Scholar
[29] Julien, C., Yebka, B. and Nazri, G.A., Materials Sci. & Eng., B38, 65 (1996).Google Scholar
[30] Basu, S. & Worrell, W.L., in Fast ton Transport in Solids, edited by Vashishta, P., Mundy, J.N. and Shenoy, G.K. (North-Holland, Amsterdam, 149 (1979).Google Scholar
[31] McKinnon, W.R. & Hearing, R.R., in Modem Aspects of Electrochemistry vol. 15, edited by White, R., Bockris, J.O'M. and Conway, B.E. (Plenum, New York, 235 (1983).Google Scholar