Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T09:28:03.739Z Has data issue: false hasContentIssue false

Electrochemical synthesis of CdSe/CdTe nanowires for hybrid photovoltaic structures

Published online by Cambridge University Press:  10 June 2014

Jelena Gurevits
Affiliation:
Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
Sergei Bereznev
Affiliation:
Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
Valdek Mikli
Affiliation:
Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
Revathi Naidu
Affiliation:
Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
Enn Mellikov
Affiliation:
Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
Julia Kois
Affiliation:
Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
Get access

Abstract

Advanced electrochemical technique was elaborated to fabricate self-organized CdSe nanowire structures from aqueous electrolytes on ITO coated glass substrates. We have recently been demonstrated successful electrochemical formation of free-assistent CdSe nanowire structures with diameter around 30 nm. This work has extended our previous research of electrodeposition of Cd chalcogenide (CdSe, CdS) nanowires to formation of core-shell CdSe/CdTe photosensitive nanowire structures. CdSe nanowire structures were synthesized potentiostatically from an acidic solution of H2SeO3 and CdCl2 at room temperature. Then the CdSe (core) nanowires were further passivated with CdTe (shell) thin film by method of electrochemical deposition from acidic solution of H2TeO3 and CdCl2. The effect of interfacial passivation with CdTe layer on the performance of the prepared photovoltaic structures was investigated and special account was paid to the morphology, composition and photovoltaic properties of obtained CdSe/CdTe nano-layers. It should be noted, that electrically conductive polymer photoabsorbers (poly (3-octylthiophene) etc.) were applied successfully for preparation of high work-function ohmic contact-sensitizer layer to CdTe shells. The electrodeposition and spin-casting techniques were applied step-by-step to prepare complete hybrid photovoltaic structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maiera, E., Rath, T., Haas, W., Werzer, O., Saf, R., Hofer, F., Meissner, D., Volobujeva, O., Bereznev, S., Mellikov, E., Amenitsch, H., Resel, R. and Trimmel, G., Solar Energy Materials and Solar Cells 95, 13541361 (2011)CrossRefGoogle Scholar
Kim, l.S., Kang, Y., Lee, H. and Kim, D., Solid State Phenom. 124-126, 967970 (2007)CrossRefGoogle Scholar
Chen, Y., Wei, L., Zhang, G. and Jiao, J., Nanoscale Res. Lett. 7, 516 (2012)CrossRefGoogle Scholar
Corregidor, V., Alves, L.C., Franco, N., Barreiros, M.A., Sochinskii, N.V. and Alves, E., Nucl. Instrum. Meth. B. 306, 218221 (2013)CrossRefGoogle Scholar
Heo, J.H., Im, S.H., Kim, H.-J., Boix, P.P., Lee, S.J., Seok, S.I., Sero, I.M. and Bisquert, J., J. Phys. Chem. C. 116, 2071720721 (2012)CrossRefGoogle Scholar
Choi, Y., Seol, M., Kim, W. and Yong, K., J.Phys.Chem. C. 118(11), 56645670 (2014)CrossRefGoogle Scholar
Lee, H., Wang, M., Chen, P., Gamelin, D.R., Zakeeruddin, S.M., Gratzel, M. and Nazeeruddin, M.K., Nano Lett. 9(12), 42214227 (2009)CrossRefGoogle Scholar
Kois, J., Bereznev, S., Volobujeva, O., Gurevits, J. and Mellikov, E., J. Cryst. Growth. 320, 912 (2011)CrossRefGoogle Scholar
Kois, J., Bereznev, S., Gurevits, J., Volobujeva, O., Mater. Lett. 95, 110113 (2012)CrossRefGoogle Scholar
Kois, J., Gurevits, J., Bereznev, S., Volobujeva, O., Öpik, A., Mellikov, E., Appl. Surf. Sci. 283, 982985 (2013)CrossRefGoogle Scholar
Li, Q., Tian, L., Chi, K., Yang, H., Sun, M., Fu, W., Appl. Surf. Sci. 270, 707711 (2013)CrossRefGoogle Scholar
Ionov, R. and Dudev, T., Appl. Phys. A 55, 203206 (1992)CrossRefGoogle Scholar
Kelley, A.M., Dai, Q., Jiang, Z., Baker, J.A., Kelley, D.F., Chem. Phys. 422, 272276 (2013)CrossRefGoogle Scholar
Li, I.L., Ruan, S.C., Li, Z.M., Zhai, J.P. and Tang, Z.K., Appl. Phys. Lett. 87, 071920 (2005)Google Scholar
Ray, S.C. and Mallick, K., Int. J. Chem. Eng. Appl. Vol. 4, No. 4 (2013)Google Scholar
Soares, M.J. and do Carmo, M.C., P. SPIE , 4469(1) (2001)Google Scholar