Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T18:43:46.937Z Has data issue: false hasContentIssue false

Electrochemical Synthesis of Lamellar Structured Inorganic Films Using Interfacial Surfactant Templating

Published online by Cambridge University Press:  26 February 2011

Kyoung-Shin Choi
Affiliation:
kchoi1@purdue.edu, Purdue University, Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, United States, 765-494-0049, 765-494-0239
Ellen M. P. Steinmiller
Affiliation:
penningt@purdue.edu, Purdue University, Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, United States
Matthew S. Yarger
Affiliation:
myarger@purdue.edu, Purdue University, Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, United States
Get access

Abstract

Zinc oxide and cobalt hydroxide films with ordered lamellar structures were electrochemically produced via interfacial surfactant templating. This method utilizes interfacial amphiphile assemblies on a working electrode as a template to electrodeposit inorganic nanostructures. Surfactants with anionic head groups (e.g. sodium dodecyl sulfate, 1-hexadecanesulfonate sodium salt, dodecylbenzenesulfonate sodium salt, and dioctyl sulfosuccinate sodium salt) formed bilayer assemblies with Zn2+ and Co2+ ions on the working electrode and guided the lamellar growth of ZnO and Co(OH)2 films. In order to gain the ability to precisely tailor inorganic lamellar structures, the effect of co-solvent and type of working electrode on the repeat distances, homogeneity and orientation of the interfacial amphiphilic bilayers were investigated. The results described here will provide a useful foundation to design and optimize synthetic conditions for electrochemical construction of inorganic lamellar structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gratzel, M. Opin. Colloid In. 1999, 4, 314.Google Scholar
[2] Liu, P.; Lee, S.-H.; Tracy, C. W.; Yan, Y.; Turner, J. A. Adv. Mater. 2002, 14, 27.Google Scholar
[3] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.Google Scholar
[4] Zhao, D. Y.; Yang, P. D.; Huo, Q. S.; Chmelka, B.; Stucky, G. D. Curr. Op. Solid St. M. 1998, 3, 111.Google Scholar
[5] Lu, Y.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364.Google Scholar
[6] Wanless, E. J.; Ducker, W. A. J. Phys. Chem. 1996, 100, 3207.Google Scholar
[7] Burgess, I.; Jeffrey, C. A.; Cai, X.; Szymanski, G.; Galus, Z.; Lipkowski, J. Langmuir 1999, 15, 2607.Google Scholar
[8] Therese, G. H. A.; Kamath, P. V. Chem. Mater. 2000, 12, 1195.Google Scholar
[9] Tan, Y.; Steinmiller, Ellen M. P.; Choi, K.-S. Langmuir 2005, 21, 9618.Google Scholar
[10] Yarger, M. S.; Choi, K.-S. Chem. Commun. 2006, In press.Google Scholar
[11] Huang, M. H.; Kartono, F.; Dunn, B.; Zink, J. I. Chem. Mater. 2002, 14, 5153.Google Scholar
[12] Attard, G. S.; Leclerc, S. A. A.; Maniguet, S.; Russel, A. E.; Nandhakumar, I.; Bartlett, P. N. Chem. Mater. 2001, 13, 1444.Google Scholar