Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:15:15.897Z Has data issue: false hasContentIssue false

Electrochromic Behavior of Ionically Self-Assembled Thin Films

Published online by Cambridge University Press:  21 March 2011

J.A. Janik
Affiliation:
Dept. of Physics, Virginia Tech Blacksburg, Va. 24061-0435
J.R. Heflin
Affiliation:
Dept. of Physics, Virginia Tech Blacksburg, Va. 24061-0435
D. Marciu
Affiliation:
Luna Innovations, P.O. Box 11704 Blacksburg, Va. 24062
M.B. Miller
Affiliation:
Luna Innovations, P.O. Box 11704 Blacksburg, Va. 24062
R.M. Davis
Affiliation:
Dept. of Chemical Engineering, Virginia Tech Blacksburg, Va. 24061-0211
Get access

Abstract

Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub- nanometer control of the thickness and relative spatial location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2- acylamido 2-methyl propane sulfonic acid) (PAMPS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Mastragostino, M. in “Applications of Electroactive Polymers,” ed. by Scrosati, B. (Chapman and Hall, London, 1993) pp. 223249.Google Scholar
2. Nawa, K., Imae, I., Noma, N., and Shirota, Y., Macromol. 28, 723729 (1995).Google Scholar
3. Ram, M.K., Maccioni, E., Nicolini, C., Thin Solid Films 303, 2733 (1997).Google Scholar
4. Goff, A. Hugot-Le, Bernard, M-C., Bich, V.T., Binh, N.T., Zeng, W., SPIE Proc. 3145, 200207 (1997).Google Scholar
5. Decher, G., Hong, J.D., and Schimitt, J., Thin Solid Films 210/211, 831 (1992).Google Scholar
6. Decher, G., Science 277, 1232 (1997).Google Scholar
7. Heflin, J.R., Liu, Y., Figura, C., Marciu, D., and Claus, R., SPIE 3147, 10 (1997); Appl. Phys. Lett. 74, 495 (1999).Google Scholar
8. Marciu, D., Miller, M.B., Ritter, A.L., Murray, M.A., Neyman, P.J., Graupner, W., Heflin, J.R., Wang, H., Gibson, H.W., and Davis, R.M., SPIE Proc. Vol. 3938, 169179 (2000).Google Scholar
9. Brands, C., Piok, T., Neyman, P. J., Erlacher, A., Soman, C., Murray, M. A., Schroeder, R., Heflin, J. R., Graupner, W., Marciu, D., Drake, A., Miller, M. B., Wang, H., Gibson, H., Dorn, H. C., Leising, G., Guzy, M., Davis, R.M., SPIE Proc. Vol. 3937, 5162 (2000).Google Scholar
10. Cheung, J.H., Fou, A.F., Rubner, M. F., Thin Solid Films 244, 985989 (1994).Google Scholar