Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T05:44:16.758Z Has data issue: false hasContentIssue false

Electrodes and Barriers for Dram and Feram: Processing, Integration, and Fundamentals

Published online by Cambridge University Press:  21 March 2011

K.L. Saenger
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
P.C. Andricacos
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
S.D. Athavale
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
J.D. Baniecki
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
C. Cabral Jr
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
G. Costrini
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
K.T. Kwietniak
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
R.B. Laibowitz
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
J.J. Lian
Affiliation:
Infineon, Hopewell Junction, NY 12533
Y. Limb
Affiliation:
Infineon, Hopewell Junction, NY 12533
D.A. Neumayer
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
M.L. Wise
Affiliation:
Infineon, Hopewell Junction, NY 12533
Get access

Abstract

Materials requirements for electrodes and barriers in high density dynamic random access memory (DRAM) and ferroelectric random access memory (FERAM) are reviewed, and some approaches to barrier materials and device geometries are described. Electrode/barrier topics covered in more detail include Pt reactivity with Si-containing barriers and dielectric overlayers, the application of a Bragg-Brentano x-ray diffraction technique to quantitatively probe Pt and Ir electrode morphology and thickness changes during ferroelectric processing, the stability of metal oxide electrode materials in reducing ambients, electrode patterning techniques (including Pt electroplating), and electrical properties of 3-D capacitors in 256k arrays as a function of top electrode annealing treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kotecki, D.E., Baniecki, J.D., Shen, H., Laibowitz, R.B., Saenger, K.L., Lian, J.J., Shaw, T.M., Athavale, S.D., Cabral, C. Jr, Duncombe, P.R., Gutsche, M., Kunkel, G., Park, Y.-J., Wang, Y.-Y., and Wise, R., IBM J. Res. Develop. 43 367 (1999).Google Scholar
2. Hugon, M.C., Desvignes, J.M., Agius, B., Vickridge, I.C., Kim, D.J., and Kingon, A.I., Nucl. Instrum. Methods Phys. Res. B, 161–163 578 (2000).10.1016/S0168-583X(99)00953-2Google Scholar
3. Hara, T., Kitamura, T., Tanaka, M., Kobayashi, T., Sakiyama, K., Onishi, S., Ishihara, K., Kudo, J., Kino, Y., and Yamashita, N., J. Electrochem. Soc. 143 L264 (1996); T. Hara, M. Tanaka, K. Sakiyama, S. Onishi, K. Ishihara, and J. Kudo, Jpn. J. Appl. Phys. 36 L893 (1997).Google Scholar
4. Grill, A., Jahnes, C., and Cabral, C. Jr, J. Mat. Res. 14 1604 (1999).10.1557/JMR.1999.0215Google Scholar
5. Cabral, C. Jr, Saenger, K.L., Kotecki, D.E., and Harper, J.M.E., J. Mater. Res. 15 194 (2000).10.1557/JMR.2000.0031Google Scholar
6. Saenger, K.L., Grill, A., Shaw, T.M., Neumayer, D.A., Lin, C., and Wang, Y.Y., Mat. Res. Soc. Symp. Proc. 541 119 (1999).Google Scholar
7. Saenger, K.L., Comfort, J.H., Grill, A., and Kotecki, D.E., U.S. Patent No. 5 914 851 (22 June 1999).Google Scholar
8. Saenger, K.L. and Noyan, I.C., J. Appl. Phys., in press for March 15, 2001 issue.Google Scholar
9. Saenger, K.L. and Neumayer, D.A., J. Appl. Phys., in press for March 15, 2001 issue.Google Scholar
10. Ahilea, T., Zolotoyabko, E., Hartwig, J., Ohler, M., and Prieur, E., J. Appl. Phys. 84 6076 (1998).Google Scholar
11. Zolotoyabko, E., J. Appl. Cryst. 31 241 (1998).Google Scholar
12. Swalin, R.A., Thermodynamics of Solids, John Wiley and Sons, New York, 1972, pp. 113116.Google Scholar
13. , Jehn, Speck, H., Hehn, W., Fromm, E., and Horz, G., Physics Data: Gases and Carbon in Metals (Thermodynamics, Kinetics, and Properties) Pt. XX: Platinum Metals (2), Fachinformations-zentrum Energie (1982).Google Scholar
14. Cha, S.Y. and Lee, H.C., Jpn. J. Appl. Phys. 38 L1128 (1999).Google Scholar
15. Saenger, K.L. and Rossnagel, S.M., Mat. Res. Soc. Symp. Proc. 596 57 (2000).Google Scholar
16. Yunogami, T. and Nojiri, K., J. Vac. Sci. Technol. B, 18 1911 (2000).10.1116/1.1303812Google Scholar
17. Chiang, M.C., Pan, F.M., Cheng, H.C., Liu, J.S., Chan, S.H., and Wei, T.C., J. Vac. Sci. Technol. A 18 181 (2000).Google Scholar
18. Andricacos, P.C., Comfort, J.H., Grill, A., Kotecki, D.E., Patel, V.V., Saenger, K.L., and Schrott, A.G., U.S. Patent No. 5 789 320 (4 August 1998).Google Scholar
19. Horii, H., Lee, B.T., Lim, H.J., Joo, S.H., Kang, C.S., Yoo, C.Y., Park, H.B., Kim, W.D., Lee, S.I., and Lee, M.Y., 1999 Symposium on VLSI Technology (Kyoto, Japan 14-16 June 1999), Digest of Technical Papers 103 (1999).Google Scholar
20. Yoo, C.Y., Park, H.B., Hwang, D.S., Hideki, H., Kim, W.D., Lim, H.J., Park, Y.W., Lee, S.I., and Lee, M.Y., Mat. Res. Soc. Symp. Proc. 596 11 (2000).Google Scholar
21. Baniecki, J.D.et al., in preparation.Google Scholar