Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:17:44.374Z Has data issue: false hasContentIssue false

Electroluminescence Studies Of Si Bulk Materials Using Al-Si Schottky Diodes

Published online by Cambridge University Press:  10 February 2011

Chun-Xia Du
Affiliation:
Dept. of Physics, Linköping University, S-581 83 Linköping, Sweden
Wei-Xin Ni
Affiliation:
Dept. of Physics, Linköping University, S-581 83 Linköping, Sweden
Kenneth B. Joelsson
Affiliation:
Dept. of Physics, Linköping University, S-581 83 Linköping, Sweden
Guang-Di Shen
Affiliation:
Dept. of Physics, Linköping University, S-581 83 Linköping, Sweden
Göran V. Hansson
Affiliation:
Dept. of Physics, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

Electroluminescence (EL) of Si bulk materials has been studied using lowly doped substrate with two Al-Si Schottky contacts. By applying a forward bias on the structure, the intense light emissions at 1.094 eV due to the TO-phonon assisted recombination was obtained at 40 K while other TA- and 2TO-associated transitions were also observed. The Si-TO EL peak persists up to RT with a radiative decay of ∼ 5 μs. EL emission mechanisms of these Si Schottky diodes are discussed based on temperature dependent- and injection current-dependent EL measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haynes, J. R. and Westphal, W. C., Phys. Rev. 101, p.1676 (1956).Google Scholar
2. Dean, P.J. and Hall, D. G., Phys. Rev. B50, p.10661 (1994).Google Scholar
3. Engvall, J., Olajos, J., Grimmeiss, H.G., Presting, H., Kibbel, H., and Kasper, E., Appl. Phys. Lett. 63, p.491 (1993).Google Scholar
4. Presting, H., Zinke, T., Brux, O., Gail, M., Abstreiter, G., Kibbel, H., and Jaros, M., Thin Solid Films 157, p.15 (1995).Google Scholar
5. Franzò, G., Priolo, F., Coffa, S., Polman, A., and Camera, A., Appl. Phys. Lett. 64, p.2235 (1994).Google Scholar
6. Stimmer, J., Reittinger, A., NÅtzel, J.F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch., Appl. Phys. Lett. 68, p.3290 (1996).Google Scholar
7. Du, C.-X., Ni, W.-X., Joelsson, K.B., and Hansson, G.V., Appl. Phys. Lett. 71, p.1023 (1997).Google Scholar
8. Lazarouk, S., Jaguiro, P., Katsouba, S., Masini, G., Monica, A. La, Mariello, G., and Ferrai, A., Appl. Phys. Lett. 68, p.2108 (1996).Google Scholar
9. Tsybeskov, L., Moore, K. L., Duttagupta, S. P., Hirschman, K. D., Hall, D. G. and Fauchet, P. M., Appl. Phys. Lett. 69, p.3411(1996).Google Scholar
10. Davis, G., Phys. Rep. 176, p.84 (1989).Google Scholar
11. Tsybeskov, L., Moore, K. L., Hall, D. G. and Fauchet, P. M., Phys. Rev. B 54, p.8361(1996).Google Scholar
12. Ni, W.-X., Joelsson, K.B., Du, C.-X., Pozina, G., Buyanova, I.A., Chen, W.M., Hansson, G.V., and Monemar, B., to be published in Thin Solid Films (1997).Google Scholar
13. Sze, S., in Physics of Semiconductor Devices, John Wiley & Sons, New Youk, 1981.Google Scholar
14. Fossum, J.G., Mertens, R.P., Lee, D.S., and Nijs, J.F., Solid State Electronics 26, p.569 (1983).Google Scholar