Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T07:18:04.306Z Has data issue: false hasContentIssue false

Electron Holography of Ferromagnetic Nanoparticles Encapsulated in Three-Dimensional Arrays of Aligned Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Krzysztof K. Koziol
Affiliation:
kk292@cam.ac.uk, University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom, +441223334335
Takeshi Kasama
Affiliation:
tk305@cam.ac.uk, Frontier Research System, The Institute of Physical and Chemical Research, Hatoyama, Saitama, 350-0395, Japan
Rafal E. Dunin-Borkowski
Affiliation:
red10@hermes.cam.ac.uk, University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Prabeer Barpanda
Affiliation:
prabeer@eden.rutgers.edu, University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Alan H. Windle
Affiliation:
ahw1@cam.ac.uk, University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Get access

Abstract

Closely-spaced ferromagnetic nanoparticles are of interest for applications that include data storage, magnetic imaging and drug delivery. Here, we use off-axis electron holography and micromagnetic simulations to study the magnetic properties of iron nanoparticles encapsulated in three-dimensional arrays of carbon nanotubes. The nanotubes constrain the shapes, sizes and separations of the nanoparticles, as well protecting them from oxidation. We record magnetic induction maps from individual particles that each contain a single magnetic domain. We also discuss the use of electron holography to assess magnetostatic interactions between adjacent particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oberlin, A., Endo, M., and Koyama, T., Journal of Crystal Growth 32, 335349 (1976).Google Scholar
2. Iijima, S., Nature 354, 5658 (1991).Google Scholar
3. Marton, L., Phys. Rev. 85, 10571058 (1952).Google Scholar
4. Orchowski, A., Rau, W. D., and Lichte, H., Phys. Rev. Lett. 74, 399402 (1995).Google Scholar
5. Cespedes, O., Ferreira, M. S., Sanvito, S., Kociak, M., and Coey, J. M. D., J. Phys-condens. Mat. 16, L155–L161 (2004).Google Scholar
6. Rode, A. V., Gamaly, E. G., Christy, A. G., Gerald, J. G. F., Hyde, S. T., Elliman, R. G., Luther-Davies, B., Veinger, A. I., Androulakis, J., and Giapintzakis, J., Phys. Rev. B 70, 054407 (2004).Google Scholar
7. Jang, J. W., Phys. Stat. Sol. B 241, 16051608 (2004).Google Scholar
8. Keller, N., Pham-Huu, C., Shiga, T., Estournes, C., Greneche, J. M., and Ledoux, M. J., Journal of Magnetism and Magnetic Materials 272, 16421644 (2004).Google Scholar
9. Satishkumar, B. C., Vogl, Erasmus M., Govindaraj, A., and Rao, C. N. R., J. Phys. D: Appl. Phys. 29, 31733176 (1996).Google Scholar
10. Yan, X. Q., Gao, X. P., Li, Y., Liu, Z. Q., Wu, F., Shen, Y. T., and Song, D. Y., Chem. Phys Lett. 372, 336341 (2003).Google Scholar
11. Singh, C., Shaffer, M. S. P., and Windle, A. H., Carbon, 41, 359368 (2003).Google Scholar
12. Dunin-Borkowski, R. E., Kasama, T., Wei, A., Tripp, S. L., Hytch, M. J., Snoeck, E., Harrison, R. J., and Putnis, A., Microsc. Res. Techn. 64, 390 (2004).Google Scholar
13. http://llgmicro.home.mindspring.com/Google Scholar
14. Fujita, T., Chen, M., Wang, X., Xu, B., Inoke, K., and Yamamoto, K., J. Appl. Phys. 101, 014323 (2007).Google Scholar
15. Arie, T., Nishijima, H., Akita, S., Nakayama, Y., J. Vac. Sci. Technol. B, 18, 104106 (2000).Google Scholar