Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T22:53:27.603Z Has data issue: false hasContentIssue false

Electron Time-of-Flight Measurements in Porous Silicon

Published online by Cambridge University Press:  15 February 2011

Prasanna Rao
Affiliation:
Dept. of Physics, Syracuse University, Syracuse, NY 13244–1130
E. A. Schiff
Affiliation:
Dept. of Physics, Syracuse University, Syracuse, NY 13244–1130
L. Tsybeskov
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester NY 14627
P. M. Fauchet
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester NY 14627
Get access

Abstract

Transient photocurrent measurements are reported in an electroluminescent porous silicon diode. Electron drift mobilities are obtained from the data as a function of temperature. Electron transport is dispersive, with a typical dispersion parameter α≈ 0.5. The range of mobilities is 10−5 − 10−4 cm2Vs between 225 K amd 400 K. This temperature-dependence is much less than expected for multiple-trapping models for dispersion, and suggests that a fractal structure causes the dispersion and the small mobilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Canham, L.T., Appl Phys. Lett. 57, 1046 (1990).Google Scholar
[2]Koshida, N. and Koyama, H., Nanotechnology 3, 192 (1992).Google Scholar
[3]Steiner, P., Kozlowski, F., and Lang, W., Appl. Phys. Lett. 62, 2700 (1993).Google Scholar
[4]Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett. 60, 2514 (1992).Google Scholar
[5]Fejfar, A., Pelant, I., Sipek, E., Kocka, J., Juska, G., Matsumoto, T., and Kanemitsu, Y., Appl. Phys. Lett. 66, 1098 (1995).Google Scholar
[6]Ben-Chorin, M., Moller, F., Koch, F., Schirmahcer, W., and Eberhard, M., Phys. Rev. B5, 2199(1995).Google Scholar
[7]Peng, C. and Fauchet, P.M., Appl. Phys. Lett. 67, 2515 (1995).Google Scholar
[8]Wang, Q., Antoniadis, H., Schiff, E.A., and Guha, S., Phys. Rev. B 47, 9435 (1993).Google Scholar
[9]Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D., and Fauchet, P.M., Appl. Phys. Lett. 68, 2058 (1996).Google Scholar
[10]Gu, Q., Wang, Q., Schiff, E.A., Li, Y.-M., and Malone, C.T., J. Appl. Phys. 76, 2310 (1994).Google Scholar
[11]Monroe, D., Phys. Rev. Lett. 54, 146 (1985);Google Scholar
Grünewald, M. and Thomas, P., Phys. Status Solidi B 94, 125 (1979).Google Scholar
[12]Overhof, H., in Amorphous Silicon Technology—1992, edited by Thompson, M.J., et al. (Materials Research Society, Symposia Proceedings Vol. 258, Pittsburgh, 1992), pp. 681692.Google Scholar
[13]Gefen, Y., Aharony, A., and Alexander, S., Phys. Rev. Lett. 50, 77 (1983); see alsoGoogle Scholar
Nakayama, T., Yakubo, K., and Orbach, R., Rev. Mod. Phys. 66, 381 (1994).Google Scholar