Published online by Cambridge University Press: 15 February 2011
The metal azides (or azido complexes) of La, Ce, Ti, Fe(III), Co, Ni, Pd, Ag, Tl, Cd, Sn, Sb and Bi have been synthesised and subjected in situ within a high resolution transmission electron microscope, to electron-beam fluxes (ca 0.1–1.0 A/cm2) to induce rapid decomposition. The materials, which are highly energetic and some are reportedly explosively sensitive, were carefully handled during synthesis to avoid mechanical shock, and only microgram quantities were decomposed whilst on holey carbon support films. In all cases beam-induced decomposition was very rapid. The exothermicity of the reaction induced in the beam promotes vigorous melting which either precedes or is accompanied by radiolysis. The net result is a rapid evolution of nitrogen (product) gas, which causes atomisation and spallation of the metal products. These molten metal particles are hard landed on a 300–500 μm 2 area of the support film with diameters in the nanometre size range. Data is presented on the synthesis of the azides, the nature of the beam-induced process as well as representative electron micrographs of some of the pristine starting materials and the nanoparticulate products.