Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T21:25:29.273Z Has data issue: false hasContentIssue false

Electronic Defects and Device Performance in CuGaSe2 Solar Cells

Published online by Cambridge University Press:  01 February 2011

J. Jedediah Rembold
Affiliation:
jrembol@linfield.edu, Linfield College, McMinnville, OR, 97128, United States
Todd W. Curtis
Affiliation:
tocurtis@linfield.edu, Linfield College, McMinnville, OR, 97128, United States
Jennifer T. Heath
Affiliation:
jheath@linfield.edu, Linfield College, Physics, 900 SE Baker St. Unit A468, McMinnville, OR, 97128, United States, 5038832267, 5038832781
David L. Young
Affiliation:
David_Young@nrel.gov, National Renewable Energy Laboratory, Golden, CO, 80401, United States
Steve W. Johnston
Affiliation:
steve_johnston@nrel.gov, National Renewable Energy Laboratory, Golden, CO, 80401, United States
William N. Shafarman
Affiliation:
wns@udel.edu, University of Delaware, Institute of Energy Conversion, Newark, DE, 19716, United States
Get access

Abstract

The electronic and materials properties of two series of wide-bandgap solar cells with Cu-poor CuGaSe2 (CGS) absorbers have been studied, to better understand limitations on the device performance. One series of samples displayed distinct lateral non-uniformities in Cu/Ga ratio, Na content, and thickness, likely due to a limited supply of Se during CGS growth. The second series of samples appeared uniform. The most prominent electronic difference was the presence of a distinct band of near-interface defect states in the more non-uniform set of samples. The device performance did not appear to be limited by defects in the bulk CGS film until the defect density was larger than 2×1016 cm-3. Instead, interface recombination appears to be a significant factor limiting Voc in both sets of samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egaas, B. and Noufi, R.., Prog. Photovolt: Res. Appl. 13, 209 (2005).Google Scholar
2. AbuShama, J., Noufi, R., Johnston, S., Ward, S. and Wu, X., in Proceedings of the 31st IEEE photovoltaics specialists conference (IEEE, Florida, 2005) pp. 299302.Google Scholar
3. Shafarman, W.N. and Zhu, J., Thin Solid Films 361-362, 473 (2000).Google Scholar
4. Young, D., Keane, J., Duda, A., AbuShama, J., Perkins, C.L., Romero, M. and Noufi, R.., Prog. Photovolt: Res. Appl. 11, 535 (2003).Google Scholar
5. Nadenau, V., Lippold, G., Rau, U. and Schock, H. W., J. Crys. Growth 233, 13 (2001).Google Scholar
6. Balboul, M.R., Rau, U., Bilger, G., Schmidt, M., Schock, H.W., and Werner, J.H., J. Vac. Sci. Technol. A 20, 1247 (2002).Google Scholar
7. Heath, J. T., Cohen, J. D. and Shafarman, W.N., J. Appl. Phys. 95, 1000 (2004).Google Scholar
8. Heath, J. T., Cohen, J.D., Shafarman, W.N., Liao, D.X. and Rockett, A.A., Appl. Phys. Lett. 80, 17 (2002).Google Scholar
9. Hegedus, S. S. and Shafarman, W. N., Prog. Photovolt: Res. Appl. 12, 155 (2004).Google Scholar
10. Nadenau, V., Rau, U., Jasenek, A. and Schock, H.W., J. Appl. Phys. 87, 584 (2000).Google Scholar
11. Herberholz, R., Nadenau, V., Rühle, U., Köble, C., Schock, H. W. and Dimmler, B., Sol. Energy Mater. Sol. Cells 47, 227 (1997).Google Scholar
12. Rostan, P.J., Rau, U., Nguyen, V.X., Kirchartz, T., Schubert, M.B. and Werner, J.H., Sol. Energy Mater. Sol. Cells 90, 1345 (2006).Google Scholar
13. Jasenek, A., Rau, U., Nadenau, V. and Schock, H.W., J. Appl. Phys 87, 594 (2000).Google Scholar
14. Gloecker, M. and Sites, J.R., Thin Solid Films 480, 241 (2005).Google Scholar
15. Turcu, M., Pakma, O., Rau, U., Appl. Phys. Lett. 80, 2598 (2002).Google Scholar