Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:05:10.430Z Has data issue: false hasContentIssue false

Electronic Properties of InP(100)-(1×1)-S Surface

Published online by Cambridge University Press:  21 February 2011

Y. Tao
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces and Ddpartement de Génie Physique, Ecole Polytechnique de Montreal, C. P. 6079, Succ.“A”, Montreal, Qudbec, H3C 3A7, Canada
A. Yelon
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces and Ddpartement de Génie Physique, Ecole Polytechnique de Montreal, C. P. 6079, Succ.“A”, Montreal, Qudbec, H3C 3A7, Canada
E. Sacher
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces and Ddpartement de Génie Physique, Ecole Polytechnique de Montreal, C. P. 6079, Succ.“A”, Montreal, Qudbec, H3C 3A7, Canada
R. Leonelli
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces and Département de Physique, l'Université de Montréal, C. P. 6128, Succ.“A”, Montréal, Quebec, H3C 3J7, Canada
Get access

Abstract

X-ray photoelectron spectroscopy was used to estimate the surface Fermi level position at S-passivated InP samples. Low temperature band edge photoluminescence intensity and Schottky diode current-voltage characteristic measurements were used to investigate the surface electronic properties of S-passivated InP. The results show that surface electronic properties were greatly improved by the S-passivation. The passivated InP samples have good resistance to heat treatment, and to the formation of non-radiative recombination centers. The barrier height and ideality factor of Schottky diodes were improved by the passivation. These superior surface electronic properties are attributed to the formation of strong and stable S-In bridge bonds on the passivated InP surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).CrossRefGoogle Scholar
2. Yablonovitch, E., Sandroff, C.J., Bhat, R., and Gmitter, T., Appl. Phys. Lett. 51, 439, (1987).Google Scholar
3. Iyer, R., Chang, R. R., and Lile, D. L., Appl. Phys. Lett. 53, 134 (1988).Google Scholar
4. Lau, W. M., Jin, S., Wu, X. -W., and Ingrey, S., J. Vac. Sci.Technol. B8, 848 (1990).Google Scholar
5. Leonelli, R., Sundararaman, C. S., and Currie, J. F., Appl. Phys. Lett. 57, 2678 (1990).Google Scholar
6. Tao, Y., Yelon, A., Sacher, E., Lu, Z. H., and Graham, M. J., Appl. Phys. Lett. 60, 2669 (1992).Google Scholar
7. Tao, Y., Yelon, A., Sacher, E., Lu, Z. H., Graham, M. J. in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R. J., Helms, C. R., Hirose, M., and Rubloff, G. W (Mat. Res. Soc. Proc. 259, Pittsburg, PA, 1992) pp. 293298.Google Scholar
8. Oigawa, H., Fan, J., Nannichi, Y., Sugahara, H., and Oshima, M., Jpn. J. Appl. Phys. 30, L322 (1991).Google Scholar
9. Lu, Z. H., Tao, Y., Yang, B. X., Feng, X. H., Mitchell, D. F., Yelon, A., Graham, M. J., and Sacher, E., in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R. J., Helms, C. R., Hirose, M., and Rubloff, G. W. (Mat. Res. Soc. Proc. 259, Pittsburg, PA, 1992) pp. 299304.Google Scholar
10. Lu, Z. H., Graham, M. J., Feng, X. H., and Yang, B. X., Appl. Phys. Lett. 60, 2775 (1992).Google Scholar
11. Razeghi, M., Maurel, P., Defour, M., Omnes, F., Neu, G., and Kozacki, A., Appl. Phys. Lett. 52, 117 (1988).Google Scholar
12. Skromme, B. J., Stillman, G. E., Oberstar, J. D., and Chan, S. S., Electron. Mat. 13, 463 (1984).Google Scholar
13. Banerjee, S., Srivastava, A. K., and Arora, B. M., J. Appl. Phys. 68, 2324 (1990).Google Scholar
14. Tao, Y., Yelon, A., and Leonelli, R., Can. J. Phys. (in press).Google Scholar
15. Skromme, B.J., Sandroff, C.J., Yablonovitch, E., and Gmitter, T., Appl. Phys. Lett. 51, 2022 (1987).Google Scholar
16. Rhoderick, E. H., J. Phys.D: Appl. Phys. 3, 1153 (1970).Google Scholar
17. Hattori, K., Izumi, Y., J. Appl. Phys. 52, 5699 (1981)Google Scholar
18. Williams, R. H., Varma, R. R., and Mckinley, A., J. Phys. C: Solid State Phys. 10, 4545 (1977).Google Scholar